| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_LLT_H |
| #define EIGEN_LLT_H |
| |
| /** \ingroup cholesky_Module |
| * |
| * \class LLT |
| * |
| * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition |
| * |
| * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
| * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
| * |
| * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
| * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
| * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
| * situations like generalised eigen problems with hermitian matrices. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
| * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
| * has a solution. |
| * |
| * \sa MatrixBase::llt(), class LDLT |
| */ |
| /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) |
| * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
| * the strict lower part does not have to store correct values. |
| */ |
| template<typename MatrixType> class LLT |
| { |
| private: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| enum { |
| PacketSize = ei_packet_traits<Scalar>::size, |
| AlignmentMask = int(PacketSize)-1 |
| }; |
| |
| public: |
| |
| LLT(const MatrixType& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()) |
| { |
| compute(matrix); |
| } |
| |
| /** \returns the lower triangular matrix L */ |
| inline Part<MatrixType, LowerTriangular> matrixL(void) const { return m_matrix; } |
| |
| template<typename RhsDerived, typename ResDerived> |
| bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const; |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| |
| void compute(const MatrixType& matrix); |
| |
| protected: |
| /** \internal |
| * Used to compute and store L |
| * The strict upper part is not used and even not initialized. |
| */ |
| MatrixType m_matrix; |
| }; |
| |
| /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
| */ |
| template<typename MatrixType> |
| void LLT<MatrixType>::compute(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const int size = a.rows(); |
| m_matrix.resize(size, size); |
| // The biggest overall is the point of reference to which further diagonals |
| // are compared; if any diagonal is negligible compared |
| // to the largest overall, the algorithm bails. This cutoff is suggested |
| // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by |
| // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical |
| // Algorithms" page 217, also by Higham. |
| const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff(); |
| RealScalar x; |
| x = ei_real(a.coeff(0,0)); |
| m_matrix.coeffRef(0,0) = ei_sqrt(x); |
| if(size==1) |
| return; |
| m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0)); |
| for (int j = 1; j < size; ++j) |
| { |
| x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm(); |
| if (ei_abs(x) < cutoff) continue; |
| |
| m_matrix.coeffRef(j,j) = x = ei_sqrt(x); |
| |
| int endSize = size-j-1; |
| if (endSize>0) { |
| // Note that when all matrix columns have good alignment, then the following |
| // product is guaranteed to be optimal with respect to alignment. |
| m_matrix.col(j).end(endSize) = |
| (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy(); |
| |
| // FIXME could use a.col instead of a.row |
| m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint() |
| - m_matrix.col(j).end(endSize) ) / x; |
| } |
| } |
| } |
| |
| /** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * The result is stored in \a result |
| * |
| * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| * |
| * In other words, it computes \f$ b = A^{-1} b \f$ with |
| * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left. |
| * |
| * Example: \include LLT_solve.cpp |
| * Output: \verbinclude LLT_solve.out |
| * |
| * \sa LLT::solveInPlace(), MatrixBase::llt() |
| */ |
| template<typename MatrixType> |
| template<typename RhsDerived, typename ResDerived> |
| bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); |
| return solveInPlace((*result) = b); |
| } |
| |
| /** This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| * |
| * This version avoids a copy when the right hand side matrix b is not |
| * needed anymore. |
| * |
| * \sa LLT::solve(), MatrixBase::llt() |
| */ |
| template<typename MatrixType> |
| template<typename Derived> |
| bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==bAndX.rows()); |
| matrixL().solveTriangularInPlace(bAndX); |
| m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX); |
| return true; |
| } |
| |
| /** \cholesky_module |
| * \returns the LLT decomposition of \c *this |
| */ |
| template<typename Derived> |
| inline const LLT<typename MatrixBase<Derived>::PlainMatrixType> |
| MatrixBase<Derived>::llt() const |
| { |
| return LLT<PlainMatrixType>(derived()); |
| } |
| |
| #endif // EIGEN_LLT_H |