| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_REDUX_H |
| #define EIGEN_REDUX_H |
| |
| // TODO |
| // * implement other kind of vectorization |
| // * factorize code |
| |
| /*************************************************************************** |
| * Part 1 : the logic deciding a strategy for vectorization and unrolling |
| ***************************************************************************/ |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_traits |
| { |
| private: |
| enum { |
| PacketSize = ei_packet_traits<typename Derived::Scalar>::size, |
| InnerMaxSize = int(Derived::Flags)&RowMajorBit |
| ? Derived::MaxColsAtCompileTime |
| : Derived::MaxRowsAtCompileTime |
| }; |
| |
| enum { |
| MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) |
| && (ei_functor_traits<Func>::PacketAccess), |
| MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), |
| MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize |
| }; |
| |
| public: |
| enum { |
| Vectorization = int(MayLinearVectorize) ? int(LinearVectorization) |
| : int(MaySliceVectorize) ? int(SliceVectorization) |
| : int(NoVectorization) |
| }; |
| |
| private: |
| enum { |
| Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost |
| + (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost, |
| UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)) |
| }; |
| |
| public: |
| enum { |
| Unrolling = Cost <= UnrollingLimit |
| ? CompleteUnrolling |
| : NoUnrolling |
| }; |
| }; |
| |
| /*************************************************************************** |
| * Part 2 : unrollers |
| ***************************************************************************/ |
| |
| /*** no vectorization ***/ |
| |
| template<typename Func, typename Derived, int Start, int Length> |
| struct ei_redux_novec_unroller |
| { |
| enum { |
| HalfLength = Length/2 |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func) |
| { |
| return func(ei_redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| ei_redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); |
| } |
| }; |
| |
| template<typename Func, typename Derived, int Start> |
| struct ei_redux_novec_unroller<Func, Derived, Start, 1> |
| { |
| enum { |
| col = Start / Derived::RowsAtCompileTime, |
| row = Start % Derived::RowsAtCompileTime |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&) |
| { |
| return mat.coeff(row, col); |
| } |
| }; |
| |
| /*** vectorization ***/ |
| |
| template<typename Func, typename Derived, int Start, int Length> |
| struct ei_redux_vec_unroller |
| { |
| enum { |
| PacketSize = ei_packet_traits<typename Derived::Scalar>::size, |
| HalfLength = Length/2 |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func) |
| { |
| return func.packetOp( |
| ei_redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| ei_redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); |
| } |
| }; |
| |
| template<typename Func, typename Derived, int Start> |
| struct ei_redux_vec_unroller<Func, Derived, Start, 1> |
| { |
| enum { |
| index = Start * ei_packet_traits<typename Derived::Scalar>::size, |
| row = int(Derived::Flags)&RowMajorBit |
| ? index / int(Derived::ColsAtCompileTime) |
| : index % Derived::RowsAtCompileTime, |
| col = int(Derived::Flags)&RowMajorBit |
| ? index % int(Derived::ColsAtCompileTime) |
| : index / Derived::RowsAtCompileTime, |
| alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&) |
| { |
| return mat.template packet<alignment>(row, col); |
| } |
| }; |
| |
| /*************************************************************************** |
| * Part 3 : implementation of all cases |
| ***************************************************************************/ |
| |
| template<typename Func, typename Derived, |
| int Vectorization = ei_redux_traits<Func, Derived>::Vectorization, |
| int Unrolling = ei_redux_traits<Func, Derived>::Unrolling |
| > |
| struct ei_redux_impl; |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_impl<Func, Derived, NoVectorization, NoUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| static Scalar run(const Derived& mat, const Func& func) |
| { |
| ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix"); |
| Scalar res; |
| res = mat.coeff(0, 0); |
| for(int i = 1; i < mat.rows(); ++i) |
| res = func(res, mat.coeff(i, 0)); |
| for(int j = 1; j < mat.cols(); ++j) |
| for(int i = 0; i < mat.rows(); ++i) |
| res = func(res, mat.coeff(i, j)); |
| return res; |
| } |
| }; |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_impl<Func,Derived, NoVectorization, CompleteUnrolling> |
| : public ei_redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> |
| {}; |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_impl<Func, Derived, LinearVectorization, NoUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| static Scalar run(const Derived& mat, const Func& func) |
| { |
| const int size = mat.size(); |
| const int packetSize = ei_packet_traits<Scalar>::size; |
| const int alignedStart = (Derived::Flags & AlignedBit) |
| || !(Derived::Flags & DirectAccessBit) |
| ? 0 |
| : ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size); |
| enum { |
| alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit) |
| ? Aligned : Unaligned |
| }; |
| const int alignedSize = ((size-alignedStart)/packetSize)*packetSize; |
| const int alignedEnd = alignedStart + alignedSize; |
| Scalar res; |
| if(alignedSize) |
| { |
| PacketScalar packet_res = mat.template packet<alignment>(alignedStart); |
| for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize) |
| packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index)); |
| res = func.predux(packet_res); |
| |
| for(int index = 0; index < alignedStart; ++index) |
| res = func(res,mat.coeff(index)); |
| |
| for(int index = alignedEnd; index < size; ++index) |
| res = func(res,mat.coeff(index)); |
| } |
| else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = mat.coeff(0); |
| for(int index = 1; index < size; ++index) |
| res = func(res,mat.coeff(index)); |
| } |
| |
| return res; |
| } |
| }; |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_impl<Func, Derived, SliceVectorization, NoUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| static Scalar run(const Derived& mat, const Func& func) |
| { |
| const int innerSize = mat.innerSize(); |
| const int outerSize = mat.outerSize(); |
| enum { |
| packetSize = ei_packet_traits<Scalar>::size, |
| isRowMajor = Derived::Flags&RowMajorBit?1:0 |
| }; |
| const int packetedInnerSize = ((innerSize)/packetSize)*packetSize; |
| Scalar res; |
| if(packetedInnerSize) |
| { |
| PacketScalar packet_res = mat.template packet<Unaligned>(0,0); |
| for(int j=0; j<outerSize; ++j) |
| for(int i=0; i<packetedInnerSize; i+=int(packetSize)) |
| packet_res = func.packetOp(packet_res, mat.template packet<Unaligned> |
| (isRowMajor?j:i, isRowMajor?i:j)); |
| |
| res = func.predux(packet_res); |
| for(int j=0; j<outerSize; ++j) |
| for(int i=packetedInnerSize; i<innerSize; ++i) |
| res = func(res, mat.coeff(isRowMajor?j:i, isRowMajor?i:j)); |
| } |
| else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = ei_redux_impl<Func, Derived, NoVectorization, NoUnrolling>::run(mat, func); |
| } |
| |
| return res; |
| } |
| }; |
| |
| template<typename Func, typename Derived> |
| struct ei_redux_impl<Func, Derived, LinearVectorization, CompleteUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| enum { |
| PacketSize = ei_packet_traits<Scalar>::size, |
| Size = Derived::SizeAtCompileTime, |
| VectorizationSize = (Size / PacketSize) * PacketSize |
| }; |
| EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func) |
| { |
| Scalar res = func.predux(ei_redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); |
| if (VectorizationSize != Size) |
| res = func(res,ei_redux_novec_unroller<Func, Derived, VectorizationSize, Size-VectorizationSize>::run(mat,func)); |
| return res; |
| } |
| }; |
| |
| |
| /** \returns the result of a full redux operation on the whole matrix or vector using \a func |
| * |
| * The template parameter \a BinaryOp is the type of the functor \a func which must be |
| * an assiociative operator. Both current STL and TR1 functor styles are handled. |
| * |
| * \sa MatrixBase::sum(), MatrixBase::minCoeff(), MatrixBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() |
| */ |
| template<typename Derived> |
| template<typename Func> |
| inline typename ei_result_of<Func(typename ei_traits<Derived>::Scalar)>::type |
| MatrixBase<Derived>::redux(const Func& func) const |
| { |
| typename Derived::Nested nested(derived()); |
| typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested; |
| return ei_redux_impl<Func, ThisNested> |
| ::run(nested, func); |
| } |
| |
| /** \returns the minimum of all coefficients of *this |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::minCoeff() const |
| { |
| return this->redux(Eigen::ei_scalar_min_op<Scalar>()); |
| } |
| |
| /** \returns the maximum of all coefficients of *this |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::maxCoeff() const |
| { |
| return this->redux(Eigen::ei_scalar_max_op<Scalar>()); |
| } |
| |
| /** \returns the sum of all coefficients of *this |
| * |
| * \sa trace(), prod() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::sum() const |
| { |
| return this->redux(Eigen::ei_scalar_sum_op<Scalar>()); |
| } |
| |
| /** \returns the product of all coefficients of *this |
| * |
| * Example: \include MatrixBase_prod.cpp |
| * Output: \verbinclude MatrixBase_prod.out |
| * |
| * \sa sum() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::prod() const |
| { |
| return this->redux(Eigen::ei_scalar_product_op<Scalar>()); |
| } |
| |
| /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. |
| * |
| * \c *this can be any matrix, not necessarily square. |
| * |
| * \sa diagonal(), sum() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::trace() const |
| { |
| return diagonal().sum(); |
| } |
| |
| #endif // EIGEN_REDUX_H |