blob: 42b0cb8fb832e5beac66b4d342833f80e43eed49 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DETERMINANT_H
#define EIGEN_DETERMINANT_H
template<typename Derived>
inline const typename Derived::Scalar ei_bruteforce_det3_helper
(const MatrixBase<Derived>& matrix, int a, int b, int c)
{
return matrix.coeff(0,a)
* (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
}
template<typename Derived>
const typename Derived::Scalar ei_bruteforce_det4_helper
(const MatrixBase<Derived>& matrix, int j, int k, int m, int n)
{
return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1))
* (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3));
}
const int TriangularDeterminant = 0;
template<typename Derived,
int DeterminantType =
(Derived::Flags & (UpperTriangularBit | LowerTriangularBit))
? TriangularDeterminant : Derived::RowsAtCompileTime
> struct ei_determinant_impl
{
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
{
return m.partialLu().determinant();
}
};
template<typename Derived> struct ei_determinant_impl<Derived, TriangularDeterminant>
{
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
{
if (Derived::Flags & UnitDiagBit)
return 1;
else if (Derived::Flags & ZeroDiagBit)
return 0;
else
return m.diagonal().redux(ei_scalar_product_op<typename ei_traits<Derived>::Scalar>());
}
};
template<typename Derived> struct ei_determinant_impl<Derived, 1>
{
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
{
return m.coeff(0,0);
}
};
template<typename Derived> struct ei_determinant_impl<Derived, 2>
{
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
{
return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
}
};
template<typename Derived> struct ei_determinant_impl<Derived, 3>
{
static typename ei_traits<Derived>::Scalar run(const Derived& m)
{
return ei_bruteforce_det3_helper(m,0,1,2)
- ei_bruteforce_det3_helper(m,1,0,2)
+ ei_bruteforce_det3_helper(m,2,0,1);
}
};
template<typename Derived> struct ei_determinant_impl<Derived, 4>
{
static typename ei_traits<Derived>::Scalar run(const Derived& m)
{
// trick by Martin Costabel to compute 4x4 det with only 30 muls
return ei_bruteforce_det4_helper(m,0,1,2,3)
- ei_bruteforce_det4_helper(m,0,2,1,3)
+ ei_bruteforce_det4_helper(m,0,3,1,2)
+ ei_bruteforce_det4_helper(m,1,2,0,3)
- ei_bruteforce_det4_helper(m,1,3,0,2)
+ ei_bruteforce_det4_helper(m,2,3,0,1);
}
};
/** \lu_module
*
* \returns the determinant of this matrix
*/
template<typename Derived>
inline typename ei_traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
{
assert(rows() == cols());
return ei_determinant_impl<Derived>::run(derived());
}
#endif // EIGEN_DETERMINANT_H