| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| // using namespace Eigen; |
| |
| template<typename T> T ei_negate(const T& x) { return -x; } |
| |
| template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) |
| { |
| for (int i=0; i<size; ++i) |
| if (!ei_isApprox(a[i],b[i])) return false; |
| return true; |
| } |
| |
| #define CHECK_CWISE2(REFOP, POP) { \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ |
| ei_pstore(data2, POP(ei_pload(data1), ei_pload(data1+PacketSize))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE1(REFOP, POP) { \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| ei_pstore(data2, POP(ei_pload(data1))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| template<bool Cond,typename Packet> |
| struct packet_helper |
| { |
| template<typename T> |
| inline Packet load(const T* from) const { return ei_pload(from); } |
| |
| template<typename T> |
| inline void store(T* to, const Packet& x) const { ei_pstore(to,x); } |
| }; |
| |
| template<typename Packet> |
| struct packet_helper<false,Packet> |
| { |
| template<typename T> |
| inline T load(const T* from) const { return *from; } |
| |
| template<typename T> |
| inline void store(T* to, const T& x) const { *to = x; } |
| }; |
| |
| #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ |
| packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define REF_ADD(a,b) ((a)+(b)) |
| #define REF_SUB(a,b) ((a)-(b)) |
| #define REF_MUL(a,b) ((a)*(b)) |
| #define REF_DIV(a,b) ((a)/(b)) |
| |
| namespace std { |
| |
| template<> const complex<float>& min(const complex<float>& a, const complex<float>& b) |
| { return a.real() < b.real() ? a : b; } |
| |
| template<> const complex<float>& max(const complex<float>& a, const complex<float>& b) |
| { return a.real() < b.real() ? b : a; } |
| |
| } |
| |
| template<typename Scalar> void packetmath() |
| { |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| const int PacketSize = ei_packet_traits<Scalar>::size; |
| |
| const int size = PacketSize*4; |
| EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4]; |
| EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4]; |
| EIGEN_ALIGN_128 Packet packets[PacketSize*2]; |
| EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4]; |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = ei_random<Scalar>(); |
| data2[i] = ei_random<Scalar>(); |
| } |
| |
| ei_pstore(data2, ei_pload(data1)); |
| VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| ei_pstore(data2, ei_ploadu(data1+offset)); |
| VERIFY(areApprox(data1+offset, data2, PacketSize) && "ei_ploadu"); |
| } |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| ei_pstoreu(data2+offset, ei_pload(data1)); |
| VERIFY(areApprox(data1, data2+offset, PacketSize) && "ei_pstoreu"); |
| } |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| packets[0] = ei_pload(data1); |
| packets[1] = ei_pload(data1+PacketSize); |
| if (offset==0) ei_palign<0>(packets[0], packets[1]); |
| else if (offset==1) ei_palign<1>(packets[0], packets[1]); |
| else if (offset==2) ei_palign<2>(packets[0], packets[1]); |
| else if (offset==3) ei_palign<3>(packets[0], packets[1]); |
| ei_pstore(data2, packets[0]); |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[i+offset]; |
| |
| typedef Matrix<Scalar, PacketSize, 1> Vector; |
| VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign"); |
| } |
| |
| CHECK_CWISE2(REF_ADD, ei_padd); |
| CHECK_CWISE2(REF_SUB, ei_psub); |
| CHECK_CWISE2(REF_MUL, ei_pmul); |
| #ifndef EIGEN_VECTORIZE_ALTIVEC |
| if (!ei_is_same_type<Scalar,int>::ret) |
| CHECK_CWISE2(REF_DIV, ei_pdiv); |
| #endif |
| CHECK_CWISE2(std::min, ei_pmin); |
| CHECK_CWISE2(std::max, ei_pmax); |
| CHECK_CWISE1(ei_abs, ei_pabs); |
| CHECK_CWISE1(ei_negate, ei_pnegate); |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[0]; |
| ei_pstore(data2, ei_pset1(data1[0])); |
| VERIFY(areApprox(ref, data2, PacketSize) && "ei_pset1"); |
| |
| VERIFY(ei_isApprox(data1[0], ei_pfirst(ei_pload(data1))) && "ei_pfirst"); |
| |
| ref[0] = 0; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] += data1[i]; |
| VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux"); |
| |
| ref[0] = 1; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] *= data1[i]; |
| VERIFY(ei_isApprox(ref[0], ei_predux_mul(ei_pload(data1))) && "ei_predux_mul"); |
| |
| ref[0] = data1[0]; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] = std::min(ref[0],data1[i]); |
| VERIFY(ei_isApprox(ref[0], ei_predux_min(ei_pload(data1))) && "ei_predux_min"); |
| |
| ref[0] = data1[0]; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] = std::max(ref[0],data1[i]); |
| VERIFY(ei_isApprox(ref[0], ei_predux_max(ei_pload(data1))) && "ei_predux_max"); |
| |
| for (int j=0; j<PacketSize; ++j) |
| { |
| ref[j] = 0; |
| for (int i=0; i<PacketSize; ++i) |
| ref[j] += data1[i+j*PacketSize]; |
| packets[j] = ei_pload(data1+j*PacketSize); |
| } |
| ei_pstore(data2, ei_preduxp(packets)); |
| VERIFY(areApprox(ref, data2, PacketSize) && "ei_preduxp"); |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[PacketSize-i-1]; |
| ei_pstore(data2, ei_preverse(ei_pload(data1))); |
| VERIFY(areApprox(ref, data2, PacketSize) && "ei_preverse"); |
| } |
| |
| template<typename Scalar> void packetmath_real() |
| { |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| const int PacketSize = ei_packet_traits<Scalar>::size; |
| |
| const int size = PacketSize*4; |
| EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4]; |
| EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4]; |
| EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4]; |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = ei_random<Scalar>(-1e3,1e3); |
| data2[i] = ei_random<Scalar>(-1e3,1e3); |
| } |
| CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSin, ei_sin, ei_psin); |
| CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasCos, ei_cos, ei_pcos); |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = ei_random<Scalar>(-87,88); |
| data2[i] = ei_random<Scalar>(-87,88); |
| } |
| CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasExp, ei_exp, ei_pexp); |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = ei_random<Scalar>(0,1e6); |
| data2[i] = ei_random<Scalar>(0,1e6); |
| } |
| CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasLog, ei_log, ei_plog); |
| CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSqrt, ei_sqrt, ei_psqrt); |
| } |
| |
| void test_packetmath() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( packetmath<float>() ); |
| CALL_SUBTEST( packetmath<double>() ); |
| CALL_SUBTEST( packetmath<int>() ); |
| CALL_SUBTEST( packetmath<std::complex<float> >() ); |
| |
| CALL_SUBTEST( packetmath_real<float>() ); |
| CALL_SUBTEST( packetmath_real<double>() ); |
| } |
| } |