blob: d86d40d68332289075d7449a550d5ef90346bad0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
// using namespace Eigen;
template<typename T> T ei_negate(const T& x) { return -x; }
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
{
for (int i=0; i<size; ++i)
if (!ei_isApprox(a[i],b[i])) return false;
return true;
}
#define CHECK_CWISE2(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
ei_pstore(data2, POP(ei_pload(data1), ei_pload(data1+PacketSize))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE1(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
ei_pstore(data2, POP(ei_pload(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
template<bool Cond,typename Packet>
struct packet_helper
{
template<typename T>
inline Packet load(const T* from) const { return ei_pload(from); }
template<typename T>
inline void store(T* to, const Packet& x) const { ei_pstore(to,x); }
};
template<typename Packet>
struct packet_helper<false,Packet>
{
template<typename T>
inline T load(const T* from) const { return *from; }
template<typename T>
inline void store(T* to, const T& x) const { *to = x; }
};
#define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = REFOP(data1[i]); \
h.store(data2, POP(h.load(data1))); \
VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}
#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
#define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b))
namespace std {
template<> const complex<float>& min(const complex<float>& a, const complex<float>& b)
{ return a.real() < b.real() ? a : b; }
template<> const complex<float>& max(const complex<float>& a, const complex<float>& b)
{ return a.real() < b.real() ? b : a; }
}
template<typename Scalar> void packetmath()
{
typedef typename ei_packet_traits<Scalar>::type Packet;
const int PacketSize = ei_packet_traits<Scalar>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Packet packets[PacketSize*2];
EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4];
for (int i=0; i<size; ++i)
{
data1[i] = ei_random<Scalar>();
data2[i] = ei_random<Scalar>();
}
ei_pstore(data2, ei_pload(data1));
VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset)
{
ei_pstore(data2, ei_ploadu(data1+offset));
VERIFY(areApprox(data1+offset, data2, PacketSize) && "ei_ploadu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
ei_pstoreu(data2+offset, ei_pload(data1));
VERIFY(areApprox(data1, data2+offset, PacketSize) && "ei_pstoreu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
packets[0] = ei_pload(data1);
packets[1] = ei_pload(data1+PacketSize);
if (offset==0) ei_palign<0>(packets[0], packets[1]);
else if (offset==1) ei_palign<1>(packets[0], packets[1]);
else if (offset==2) ei_palign<2>(packets[0], packets[1]);
else if (offset==3) ei_palign<3>(packets[0], packets[1]);
ei_pstore(data2, packets[0]);
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[i+offset];
typedef Matrix<Scalar, PacketSize, 1> Vector;
VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign");
}
CHECK_CWISE2(REF_ADD, ei_padd);
CHECK_CWISE2(REF_SUB, ei_psub);
CHECK_CWISE2(REF_MUL, ei_pmul);
#ifndef EIGEN_VECTORIZE_ALTIVEC
if (!ei_is_same_type<Scalar,int>::ret)
CHECK_CWISE2(REF_DIV, ei_pdiv);
#endif
CHECK_CWISE2(std::min, ei_pmin);
CHECK_CWISE2(std::max, ei_pmax);
CHECK_CWISE1(ei_abs, ei_pabs);
CHECK_CWISE1(ei_negate, ei_pnegate);
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[0];
ei_pstore(data2, ei_pset1(data1[0]));
VERIFY(areApprox(ref, data2, PacketSize) && "ei_pset1");
VERIFY(ei_isApprox(data1[0], ei_pfirst(ei_pload(data1))) && "ei_pfirst");
ref[0] = 0;
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux");
ref[0] = 1;
for (int i=0; i<PacketSize; ++i)
ref[0] *= data1[i];
VERIFY(ei_isApprox(ref[0], ei_predux_mul(ei_pload(data1))) && "ei_predux_mul");
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = std::min(ref[0],data1[i]);
VERIFY(ei_isApprox(ref[0], ei_predux_min(ei_pload(data1))) && "ei_predux_min");
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = std::max(ref[0],data1[i]);
VERIFY(ei_isApprox(ref[0], ei_predux_max(ei_pload(data1))) && "ei_predux_max");
for (int j=0; j<PacketSize; ++j)
{
ref[j] = 0;
for (int i=0; i<PacketSize; ++i)
ref[j] += data1[i+j*PacketSize];
packets[j] = ei_pload(data1+j*PacketSize);
}
ei_pstore(data2, ei_preduxp(packets));
VERIFY(areApprox(ref, data2, PacketSize) && "ei_preduxp");
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[PacketSize-i-1];
ei_pstore(data2, ei_preverse(ei_pload(data1)));
VERIFY(areApprox(ref, data2, PacketSize) && "ei_preverse");
}
template<typename Scalar> void packetmath_real()
{
typedef typename ei_packet_traits<Scalar>::type Packet;
const int PacketSize = ei_packet_traits<Scalar>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4];
for (int i=0; i<size; ++i)
{
data1[i] = ei_random<Scalar>(-1e3,1e3);
data2[i] = ei_random<Scalar>(-1e3,1e3);
}
CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSin, ei_sin, ei_psin);
CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasCos, ei_cos, ei_pcos);
for (int i=0; i<size; ++i)
{
data1[i] = ei_random<Scalar>(-87,88);
data2[i] = ei_random<Scalar>(-87,88);
}
CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasExp, ei_exp, ei_pexp);
for (int i=0; i<size; ++i)
{
data1[i] = ei_random<Scalar>(0,1e6);
data2[i] = ei_random<Scalar>(0,1e6);
}
CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasLog, ei_log, ei_plog);
CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSqrt, ei_sqrt, ei_psqrt);
}
void test_packetmath()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( packetmath<float>() );
CALL_SUBTEST( packetmath<double>() );
CALL_SUBTEST( packetmath<int>() );
CALL_SUBTEST( packetmath<std::complex<float> >() );
CALL_SUBTEST( packetmath_real<float>() );
CALL_SUBTEST( packetmath_real<double>() );
}
}