| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| // check minor separately in order to avoid the possible creation of a zero-sized |
| // array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic. |
| // Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage |
| // but this is probably not bad to raise such an error at compile time... |
| template<typename Scalar, int _Rows, int _Cols> struct CheckMinor |
| { |
| typedef Matrix<Scalar, _Rows, _Cols> MatrixType; |
| CheckMinor(MatrixType& m1, int r1, int c1) |
| { |
| int rows = m1.rows(); |
| int cols = m1.cols(); |
| |
| Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval(); |
| VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1)); |
| mi = m1.minor(r1,c1); |
| VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1)); |
| //check operator(), both constant and non-constant, on minor() |
| m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0); |
| } |
| }; |
| |
| template<typename Scalar> struct CheckMinor<Scalar,1,1> |
| { |
| typedef Matrix<Scalar, 1, 1> MatrixType; |
| CheckMinor(MatrixType&, int, int) {} |
| }; |
| |
| template<typename MatrixType> void submatrices(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Row.h Column.h Block.h Minor.h DiagonalCoeffs.h |
| */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| ones = MatrixType::Ones(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| v3 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = ei_random<Scalar>(); |
| |
| int r1 = ei_random<int>(0,rows-1); |
| int r2 = ei_random<int>(r1,rows-1); |
| int c1 = ei_random<int>(0,cols-1); |
| int c2 = ei_random<int>(c1,cols-1); |
| |
| //check row() and col() |
| VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1)); |
| VERIFY_IS_APPROX(square.row(r1).dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1)); |
| //check operator(), both constant and non-constant, on row() and col() |
| m1.row(r1) += s1 * m1.row(r2); |
| m1.col(c1) += s1 * m1.col(c2); |
| |
| //check block() |
| Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1); |
| RowVectorType br1(m1.block(r1,0,1,cols)); |
| VectorType bc1(m1.block(0,c1,rows,1)); |
| VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1)); |
| VERIFY_IS_APPROX(m1.row(r1), br1); |
| VERIFY_IS_APPROX(m1.col(c1), bc1); |
| //check operator(), both constant and non-constant, on block() |
| m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); |
| m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); |
| |
| //check minor() |
| CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1); |
| |
| //check diagonal() |
| VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); |
| m2.diagonal() = 2 * m1.diagonal(); |
| m2.diagonal()[0] *= 3; |
| |
| const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2); |
| const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5); |
| if (rows>=5 && cols>=8) |
| { |
| // test fixed block() as lvalue |
| m1.template block<BlockRows,BlockCols>(1,1) *= s1; |
| // test operator() on fixed block() both as constant and non-constant |
| m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); |
| // check that fixed block() and block() agree |
| Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3); |
| VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols)); |
| } |
| |
| if (rows>2) |
| { |
| // test sub vectors |
| VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1)); |
| VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2)); |
| VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2)); |
| VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0)); |
| int i = rows-2; |
| VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1)); |
| VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2)); |
| VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2)); |
| VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i)); |
| i = ei_random(0,rows-2); |
| VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i)); |
| |
| enum { |
| N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0, |
| N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0 |
| }; |
| |
| // check sub/super diagonal |
| m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); |
| m2.template diagonal<N1>()[0] *= 3; |
| VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]); |
| |
| m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>(); |
| m2.template diagonal<N2>()[0] *= 3; |
| VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]); |
| |
| m2.diagonal(N1) = 2 * m1.diagonal(N1); |
| m2.diagonal(N1)[0] *= 3; |
| VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]); |
| |
| m2.diagonal(N2) = 2 * m1.diagonal(N2); |
| m2.diagonal(N2)[0] *= 3; |
| VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]); |
| } |
| |
| // stress some basic stuffs with block matrices |
| VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows)); |
| VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols)); |
| |
| VERIFY(ei_real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows)); |
| VERIFY(ei_real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols)); |
| } |
| |
| void test_submatrices() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( submatrices(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( submatrices(Matrix4d()) ); |
| CALL_SUBTEST( submatrices(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST( submatrices(MatrixXi(8, 12)) ); |
| CALL_SUBTEST( submatrices(MatrixXcd(20, 20)) ); |
| CALL_SUBTEST( submatrices(MatrixXf(20, 20)) ); |
| } |
| } |