| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MATRIX_EXPONENTIAL |
| #define EIGEN_MATRIX_EXPONENTIAL |
| |
| #ifdef _MSC_VER |
| template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } |
| #endif |
| |
| /** Compute the matrix exponential. |
| * |
| * \param M matrix whose exponential is to be computed. |
| * \param result pointer to the matrix in which to store the result. |
| * |
| * The matrix exponential of \f$ M \f$ is defined by |
| * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f] |
| * The matrix exponential can be used to solve linear ordinary |
| * differential equations: the solution of \f$ y' = My \f$ with the |
| * initial condition \f$ y(0) = y_0 \f$ is given by |
| * \f$ y(t) = \exp(M) y_0 \f$. |
| * |
| * The cost of the computation is approximately \f$ 20 n^3 \f$ for |
| * matrices of size \f$ n \f$. The number 20 depends weakly on the |
| * norm of the matrix. |
| * |
| * The matrix exponential is computed using the scaling-and-squaring |
| * method combined with Padé approximation. The matrix is first |
| * rescaled, then the exponential of the reduced matrix is computed |
| * approximant, and then the rescaling is undone by repeated |
| * squaring. The degree of the Padé approximant is chosen such |
| * that the approximation error is less than the round-off |
| * error. However, errors may accumulate during the squaring phase. |
| * |
| * Details of the algorithm can be found in: Nicholas J. Higham, "The |
| * scaling and squaring method for the matrix exponential revisited," |
| * <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193, |
| * 2005. |
| * |
| * \note Currently, \p M has to be a matrix of \c double . |
| */ |
| template <typename Derived> |
| void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matrix_type<Derived>::type* result) |
| { |
| typedef typename ei_traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType; |
| |
| ei_assert(M.rows() == M.cols()); |
| EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT) |
| |
| PlainMatrixType num, den, U, V; |
| PlainMatrixType Id = PlainMatrixType::Identity(M.rows(), M.cols()); |
| typename ei_eval<Derived>::type Meval = M.eval(); |
| RealScalar l1norm = Meval.cwise().abs().colwise().sum().maxCoeff(); |
| int squarings = 0; |
| |
| // Choose degree of Pade approximant, depending on norm of M |
| if (l1norm < 1.495585217958292e-002) { |
| |
| // Use (3,3)-Pade |
| const Scalar b[] = {120., 60., 12., 1.}; |
| PlainMatrixType M2; |
| M2 = (Meval * Meval).lazy(); |
| num = b[3]*M2 + b[1]*Id; |
| U = (Meval * num).lazy(); |
| V = b[2]*M2 + b[0]*Id; |
| |
| } else if (l1norm < 2.539398330063230e-001) { |
| |
| // Use (5,5)-Pade |
| const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; |
| PlainMatrixType M2, M4; |
| M2 = (Meval * Meval).lazy(); |
| M4 = (M2 * M2).lazy(); |
| num = b[5]*M4 + b[3]*M2 + b[1]*Id; |
| U = (Meval * num).lazy(); |
| V = b[4]*M4 + b[2]*M2 + b[0]*Id; |
| |
| } else if (l1norm < 9.504178996162932e-001) { |
| |
| // Use (7,7)-Pade |
| const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; |
| PlainMatrixType M2, M4, M6; |
| M2 = (Meval * Meval).lazy(); |
| M4 = (M2 * M2).lazy(); |
| M6 = (M4 * M2).lazy(); |
| num = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; |
| U = (Meval * num).lazy(); |
| V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; |
| |
| } else if (l1norm < 2.097847961257068e+000) { |
| |
| // Use (9,9)-Pade |
| const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., |
| 2162160., 110880., 3960., 90., 1.}; |
| PlainMatrixType M2, M4, M6, M8; |
| M2 = (Meval * Meval).lazy(); |
| M4 = (M2 * M2).lazy(); |
| M6 = (M4 * M2).lazy(); |
| M8 = (M6 * M2).lazy(); |
| num = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; |
| U = (Meval * num).lazy(); |
| V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; |
| |
| } else { |
| |
| // Use (13,13)-Pade; scale matrix by power of 2 so that its norm |
| // is small enough |
| |
| const Scalar maxnorm = 5.371920351148152; |
| const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., |
| 1187353796428800., 129060195264000., 10559470521600., 670442572800., |
| 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; |
| |
| squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); |
| PlainMatrixType A, A2, A4, A6; |
| A = Meval / pow(Scalar(2), squarings); |
| A2 = (A * A).lazy(); |
| A4 = (A2 * A2).lazy(); |
| A6 = (A4 * A2).lazy(); |
| num = b[13]*A6 + b[11]*A4 + b[9]*A2; |
| V = (A6 * num).lazy(); |
| num = V + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*Id; |
| U = (A * num).lazy(); |
| num = b[12]*A6 + b[10]*A4 + b[8]*A2; |
| V = (A6 * num).lazy() + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*Id; |
| } |
| |
| num = U + V; // numerator of Pade approximant |
| den = -U + V; // denominator of Pade approximant |
| den.lu().solve(num, result); |
| |
| // Undo scaling by repeated squaring |
| for (int i=0; i<squarings; i++) |
| *result *= *result; |
| } |
| |
| #endif // EIGEN_MATRIX_EXPONENTIAL |