| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRIDIAGONALIZATION_H |
| #define EIGEN_TRIDIAGONALIZATION_H |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * \nonstableyet |
| * |
| * \class Tridiagonalization |
| * |
| * \brief Tridiagonal decomposition of a selfadjoint matrix |
| * |
| * \tparam _MatrixType the type of the matrix of which we are computing the |
| * tridiagonal decomposition; this is expected to be an instantiation of the |
| * Matrix class template. |
| * |
| * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
| * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. |
| * |
| * A tridiagonal matrix is a matrix which has nonzero elements only on the |
| * main diagonal and the first diagonal below and above it. The Hessenberg |
| * decomposition of a selfadjoint matrix is in fact a tridiagonal |
| * decomposition. This class is used in SelfAdjointEigenSolver to compute the |
| * eigenvalues and eigenvectors of a selfadjoint matrix. |
| * |
| * Call the function compute() to compute the tridiagonal decomposition of a |
| * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) |
| * constructor which computes the tridiagonal Schur decomposition at |
| * construction time. Once the decomposition is computed, you can use the |
| * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the |
| * decomposition. |
| * |
| * The documentation of Tridiagonalization(const MatrixType&) contains an |
| * example of the typical use of this class. |
| * |
| * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver |
| */ |
| template<typename _MatrixType> class Tridiagonalization |
| { |
| public: |
| |
| /** \brief Synonym for the template parameter \p _MatrixType. */ |
| typedef _MatrixType MatrixType; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| enum { |
| Size = MatrixType::RowsAtCompileTime, |
| SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), |
| Options = MatrixType::Options, |
| MaxSize = MatrixType::MaxRowsAtCompileTime, |
| MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) |
| }; |
| |
| typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; |
| typedef typename ei_plain_col_type<MatrixType, RealScalar>::type DiagonalType; |
| typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; |
| |
| typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, |
| typename Diagonal<MatrixType,0>::RealReturnType, |
| Diagonal<MatrixType,0> |
| >::ret DiagonalReturnType; |
| |
| typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, |
| typename Diagonal< |
| Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >::RealReturnType, |
| Diagonal< |
| Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 > |
| >::ret SubDiagonalReturnType; |
| |
| /** \brief Return type of matrixQ() */ |
| typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType; |
| |
| /** \brief Default constructor. |
| * |
| * \param [in] size Positive integer, size of the matrix whose tridiagonal |
| * decomposition will be computed. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(). The \p size parameter is only |
| * used as a hint. It is not an error to give a wrong \p size, but it may |
| * impair performance. |
| * |
| * \sa compute() for an example. |
| */ |
| Tridiagonalization(int size = Size==Dynamic ? 2 : Size) |
| : m_matrix(size,size), m_hCoeffs(size > 1 ? size-1 : 1) |
| {} |
| |
| /** \brief Constructor; computes tridiagonal decomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| * is to be computed. |
| * |
| * This constructor calls compute() to compute the tridiagonal decomposition. |
| * |
| * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp |
| * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out |
| */ |
| Tridiagonalization(const MatrixType& matrix) |
| : m_matrix(matrix), m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1) |
| { |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** \brief Computes tridiagonal decomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| * is to be computed. |
| * |
| * The tridiagonal decomposition is computed by bringing the columns of |
| * the matrix successively in the required form using Householder |
| * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes |
| * the size of the given matrix. |
| * |
| * This method reuses of the allocated data in the Tridiagonalization |
| * object, if the size of the matrix does not change. |
| * |
| * Example: \include Tridiagonalization_compute.cpp |
| * Output: \verbinclude Tridiagonalization_compute.out |
| */ |
| void compute(const MatrixType& matrix) |
| { |
| m_matrix = matrix; |
| m_hCoeffs.resize(matrix.rows()-1, 1); |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** \brief Returns the Householder coefficients. |
| * |
| * \returns a const reference to the vector of Householder coefficients |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * The Householder coefficients allow the reconstruction of the matrix |
| * \f$ Q \f$ in the tridiagonal decomposition from the packed data. |
| * |
| * Example: \include Tridiagonalization_householderCoefficients.cpp |
| * Output: \verbinclude Tridiagonalization_householderCoefficients.out |
| * |
| * \sa packedMatrix(), \ref Householder_Module "Householder module" |
| */ |
| inline CoeffVectorType householderCoefficients() const { return m_hCoeffs; } |
| |
| /** \brief Returns the internal representation of the decomposition |
| * |
| * \returns a const reference to a matrix with the internal representation |
| * of the decomposition. |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * The returned matrix contains the following information: |
| * - the strict upper triangular part is equal to the input matrix A. |
| * - the diagonal and lower sub-diagonal represent the real tridiagonal |
| * symmetric matrix T. |
| * - the rest of the lower part contains the Householder vectors that, |
| * combined with Householder coefficients returned by |
| * householderCoefficients(), allows to reconstruct the matrix Q as |
| * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
| * Here, the matrices \f$ H_i \f$ are the Householder transformations |
| * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
| * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and |
| * \f$ v_i \f$ is the Householder vector defined by |
| * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ |
| * with M the matrix returned by this function. |
| * |
| * See LAPACK for further details on this packed storage. |
| * |
| * Example: \include Tridiagonalization_packedMatrix.cpp |
| * Output: \verbinclude Tridiagonalization_packedMatrix.out |
| * |
| * \sa householderCoefficients() |
| */ |
| inline const MatrixType& packedMatrix() const { return m_matrix; } |
| |
| /** \brief Returns the unitary matrix Q in the decomposition |
| * |
| * \returns object representing the matrix Q |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * This function returns a light-weight object of template class |
| * HouseholderSequence. You can either apply it directly to a matrix or |
| * you can convert it to a matrix of type #MatrixType. |
| * |
| * \sa Tridiagonalization(const MatrixType&) for an example, |
| * matrixT(), class HouseholderSequence |
| */ |
| HouseholderSequenceType matrixQ() const |
| { |
| return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate(), false, m_matrix.rows() - 1, 1); |
| } |
| |
| /** \brief Constructs the tridiagonal matrix T in the decomposition |
| * |
| * \returns the matrix T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * This function copies the matrix T from internal data. The diagonal and |
| * subdiagonal of the packed matrix as returned by packedMatrix() |
| * represents the matrix T. It may sometimes be sufficient to directly use |
| * the packed matrix or the vector expressions returned by diagonal() |
| * and subDiagonal() instead of creating a new matrix with this function. |
| * |
| * \sa Tridiagonalization(const MatrixType&) for an example, |
| * matrixQ(), packedMatrix(), diagonal(), subDiagonal() |
| */ |
| MatrixType matrixT() const; |
| |
| /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. |
| * |
| * \returns expression representing the diagonal of T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * Example: \include Tridiagonalization_diagonal.cpp |
| * Output: \verbinclude Tridiagonalization_diagonal.out |
| * |
| * \sa matrixT(), subDiagonal() |
| */ |
| const DiagonalReturnType diagonal() const; |
| |
| /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. |
| * |
| * \returns expression representing the subdiagonal of T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * \sa diagonal() for an example, matrixT() |
| */ |
| const SubDiagonalReturnType subDiagonal() const; |
| |
| /** \brief Performs a full decomposition in place |
| * |
| * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal |
| * decomposition is to be computed. On output, the orthogonal matrix Q |
| * in the decomposition if \p extractQ is true. |
| * \param[out] diag The diagonal of the tridiagonal matrix T in the |
| * decomposition. |
| * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in |
| * the decomposition. |
| * \param[in] extractQ If true, the orthogonal matrix Q in the |
| * decomposition is computed and stored in \p mat. |
| * |
| * Compute the tridiagonal matrix of \p mat in place. The tridiagonal |
| * matrix T is passed to the output parameters \p diag and \p subdiag. If |
| * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. |
| * |
| * The vectors \p diag and \p subdiag are not resized. The function |
| * assumes that they are already of the correct size. The length of the |
| * vector \p diag should equal the number of rows in \p mat, and the |
| * length of the vector \p subdiag should be one left. |
| * |
| * This implementation contains an optimized path for real 3-by-3 matrices |
| * which is especially useful for plane fitting. |
| * |
| * \note Notwithstanding the name, the current implementation copies |
| * \p mat to a temporary matrix and uses that matrix to compute the |
| * decomposition. |
| * |
| * Example (this uses the same matrix as the example in |
| * Tridiagonalization(const MatrixType&)): |
| * \include Tridiagonalization_decomposeInPlace.cpp |
| * Output: \verbinclude Tridiagonalization_decomposeInPlace.out |
| * |
| * \sa Tridiagonalization(const MatrixType&), compute() |
| */ |
| static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); |
| |
| protected: |
| |
| static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); |
| static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); |
| |
| MatrixType m_matrix; |
| CoeffVectorType m_hCoeffs; |
| }; |
| |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::DiagonalReturnType |
| Tridiagonalization<MatrixType>::diagonal() const |
| { |
| return m_matrix.diagonal(); |
| } |
| |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType |
| Tridiagonalization<MatrixType>::subDiagonal() const |
| { |
| int n = m_matrix.rows(); |
| return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal(); |
| } |
| |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::MatrixType |
| Tridiagonalization<MatrixType>::matrixT() const |
| { |
| // FIXME should this function (and other similar ones) rather take a matrix as argument |
| // and fill it ? (to avoid temporaries) |
| int n = m_matrix.rows(); |
| MatrixType matT = m_matrix; |
| matT.topRightCorner(n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate(); |
| if (n>2) |
| { |
| matT.topRightCorner(n-2, n-2).template triangularView<Upper>().setZero(); |
| matT.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero(); |
| } |
| return matT; |
| } |
| |
| #ifndef EIGEN_HIDE_HEAVY_CODE |
| |
| /** \internal |
| * Performs a tridiagonal decomposition of \a matA in place. |
| * |
| * \param matA the input selfadjoint matrix |
| * \param hCoeffs returned Householder coefficients |
| * |
| * The result is written in the lower triangular part of \a matA. |
| * |
| * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
| * |
| * \sa packedMatrix() |
| */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) |
| { |
| assert(matA.rows()==matA.cols()); |
| int n = matA.rows(); |
| for (int i = 0; i<n-1; ++i) |
| { |
| int remainingSize = n-i-1; |
| RealScalar beta; |
| Scalar h; |
| matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); |
| |
| // Apply similarity transformation to remaining columns, |
| // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) |
| matA.col(i).coeffRef(i+1) = 1; |
| |
| hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() |
| * (ei_conj(h) * matA.col(i).tail(remainingSize))); |
| |
| hCoeffs.tail(n-i-1) += (ei_conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); |
| |
| matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() |
| .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1); |
| |
| matA.col(i).coeffRef(i+1) = beta; |
| hCoeffs.coeffRef(i) = h; |
| } |
| } |
| |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| int n = mat.rows(); |
| ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1); |
| if (n==3 && (!NumTraits<Scalar>::IsComplex) ) |
| { |
| _decomposeInPlace3x3(mat, diag, subdiag, extractQ); |
| } |
| else |
| { |
| Tridiagonalization tridiag(mat); |
| diag = tridiag.diagonal(); |
| subdiag = tridiag.subDiagonal(); |
| if (extractQ) |
| mat = tridiag.matrixQ(); |
| } |
| } |
| |
| /** \internal |
| * Optimized path for 3x3 matrices. |
| * Especially useful for plane fitting. |
| */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| diag[0] = ei_real(mat(0,0)); |
| RealScalar v1norm2 = ei_abs2(mat(0,2)); |
| if (ei_isMuchSmallerThan(v1norm2, RealScalar(1))) |
| { |
| diag[1] = ei_real(mat(1,1)); |
| diag[2] = ei_real(mat(2,2)); |
| subdiag[0] = ei_real(mat(0,1)); |
| subdiag[1] = ei_real(mat(1,2)); |
| if (extractQ) |
| mat.setIdentity(); |
| } |
| else |
| { |
| RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2); |
| RealScalar invBeta = RealScalar(1)/beta; |
| Scalar m01 = mat(0,1) * invBeta; |
| Scalar m02 = mat(0,2) * invBeta; |
| Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1)); |
| diag[1] = ei_real(mat(1,1) + m02*q); |
| diag[2] = ei_real(mat(2,2) - m02*q); |
| subdiag[0] = beta; |
| subdiag[1] = ei_real(mat(1,2) - m01 * q); |
| if (extractQ) |
| { |
| mat(0,0) = 1; |
| mat(0,1) = 0; |
| mat(0,2) = 0; |
| mat(1,0) = 0; |
| mat(1,1) = m01; |
| mat(1,2) = m02; |
| mat(2,0) = 0; |
| mat(2,1) = m02; |
| mat(2,2) = -m01; |
| } |
| } |
| } |
| |
| #endif // EIGEN_HIDE_HEAVY_CODE |
| |
| #endif // EIGEN_TRIDIAGONALIZATION_H |