| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_JACOBISVD_H | 
 | #define EIGEN_JACOBISVD_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | // forward declaration (needed by ICC) | 
 | // the empty body is required by MSVC | 
 | template <typename MatrixType, int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> | 
 | struct svd_precondition_2x2_block_to_be_real {}; | 
 |  | 
 | /*** QR preconditioners (R-SVD) | 
 |  *** | 
 |  *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. | 
 |  *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for | 
 |  *** JacobiSVD which by itself is only able to work on square matrices. | 
 |  ***/ | 
 |  | 
 | enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; | 
 |  | 
 | template <typename MatrixType, int QRPreconditioner, int Case> | 
 | struct qr_preconditioner_should_do_anything { | 
 |   enum { | 
 |     a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && | 
 |         MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, | 
 |     b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && | 
 |         MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, | 
 |     ret = !((QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) || | 
 |             (Case == PreconditionIfMoreRowsThanCols && bool(b))) | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options, int QRPreconditioner, int Case, | 
 |           bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret> | 
 | struct qr_preconditioner_impl {}; | 
 |  | 
 | template <typename MatrixType, int Options, int QRPreconditioner, int Case> | 
 | class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false> { | 
 |  public: | 
 |   void allocate(const JacobiSVD<MatrixType, Options>&) {} | 
 |   template <typename Xpr> | 
 |   bool run(JacobiSVD<MatrixType, Options>&, const Xpr&) { | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | /*** preconditioner using FullPivHouseholderQR ***/ | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, | 
 |                              true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime }; | 
 |  | 
 |   typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.rows(), svd.cols()); | 
 |     } | 
 |     if (svd.m_computeFullU) m_workspace.resize(svd.rows()); | 
 |   } | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.rows() > matrix.cols()) { | 
 |       m_qr.compute(matrix); | 
 |       svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); | 
 |       if (svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); | 
 |       if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef FullPivHouseholderQR<MatrixType> QRType; | 
 |   QRType m_qr; | 
 |   WorkspaceType m_workspace; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, | 
 |                              true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
 |     MatrixOptions = traits<MatrixType>::Options | 
 |   }; | 
 |  | 
 |   typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, | 
 |                                                      MaxColsAtCompileTime, MaxRowsAtCompileTime>::type | 
 |       TransposeTypeWithSameStorageOrder; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.cols(), svd.rows()); | 
 |     } | 
 |     if (svd.m_computeFullV) m_workspace.resize(svd.cols()); | 
 |   } | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.cols() > matrix.rows()) { | 
 |       m_qr.compute(matrix.adjoint()); | 
 |       svd.m_workMatrix = | 
 |           m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); | 
 |       if (svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); | 
 |       if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); | 
 |       return true; | 
 |     } else | 
 |       return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
 |   QRType m_qr; | 
 |   typename plain_row_type<MatrixType>::type m_workspace; | 
 | }; | 
 |  | 
 | /*** preconditioner using ColPivHouseholderQR ***/ | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, | 
 |                              true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { | 
 |     WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime, | 
 |     MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.rows(), svd.cols()); | 
 |     } | 
 |     if (svd.m_computeFullU) | 
 |       m_workspace.resize(svd.rows()); | 
 |     else if (svd.m_computeThinU) | 
 |       m_workspace.resize(svd.cols()); | 
 |   } | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.rows() > matrix.cols()) { | 
 |       m_qr.compute(matrix); | 
 |       svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); | 
 |       if (svd.m_computeFullU) | 
 |         m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); | 
 |       else if (svd.m_computeThinU) { | 
 |         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); | 
 |         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); | 
 |       } | 
 |       if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef ColPivHouseholderQR<MatrixType> QRType; | 
 |   QRType m_qr; | 
 |   WorkspaceType m_workspace; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, | 
 |                              true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
 |     MatrixOptions = internal::traits<MatrixType>::Options, | 
 |     WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime, | 
 |     MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType; | 
 |  | 
 |   typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, | 
 |                                                      MaxColsAtCompileTime, MaxRowsAtCompileTime>::type | 
 |       TransposeTypeWithSameStorageOrder; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.cols(), svd.rows()); | 
 |     } | 
 |     if (svd.m_computeFullV) | 
 |       m_workspace.resize(svd.cols()); | 
 |     else if (svd.m_computeThinV) | 
 |       m_workspace.resize(svd.rows()); | 
 |   } | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.cols() > matrix.rows()) { | 
 |       m_qr.compute(matrix.adjoint()); | 
 |  | 
 |       svd.m_workMatrix = | 
 |           m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); | 
 |       if (svd.m_computeFullV) | 
 |         m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); | 
 |       else if (svd.m_computeThinV) { | 
 |         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); | 
 |         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); | 
 |       } | 
 |       if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); | 
 |       return true; | 
 |     } else | 
 |       return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
 |   QRType m_qr; | 
 |   WorkspaceType m_workspace; | 
 | }; | 
 |  | 
 | /*** preconditioner using HouseholderQR ***/ | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { | 
 |     WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime, | 
 |     MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.rows(), svd.cols()); | 
 |     } | 
 |     if (svd.m_computeFullU) | 
 |       m_workspace.resize(svd.rows()); | 
 |     else if (svd.m_computeThinU) | 
 |       m_workspace.resize(svd.cols()); | 
 |   } | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.rows() > matrix.cols()) { | 
 |       m_qr.compute(matrix); | 
 |       svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); | 
 |       if (svd.m_computeFullU) | 
 |         m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); | 
 |       else if (svd.m_computeThinU) { | 
 |         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); | 
 |         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); | 
 |       } | 
 |       if (svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef HouseholderQR<MatrixType> QRType; | 
 |   QRType m_qr; | 
 |   WorkspaceType m_workspace; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef JacobiSVD<MatrixType, Options> SVDType; | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
 |     MatrixOptions = internal::traits<MatrixType>::Options, | 
 |     WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime, | 
 |     MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType; | 
 |  | 
 |   typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, | 
 |                                                      MaxColsAtCompileTime, MaxRowsAtCompileTime>::type | 
 |       TransposeTypeWithSameStorageOrder; | 
 |  | 
 |   void allocate(const SVDType& svd) { | 
 |     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { | 
 |       internal::destroy_at(&m_qr); | 
 |       internal::construct_at(&m_qr, svd.cols(), svd.rows()); | 
 |     } | 
 |     if (svd.m_computeFullV) | 
 |       m_workspace.resize(svd.cols()); | 
 |     else if (svd.m_computeThinV) | 
 |       m_workspace.resize(svd.rows()); | 
 |   } | 
 |  | 
 |   template <typename Xpr> | 
 |   bool run(SVDType& svd, const Xpr& matrix) { | 
 |     if (matrix.cols() > matrix.rows()) { | 
 |       m_qr.compute(matrix.adjoint()); | 
 |  | 
 |       svd.m_workMatrix = | 
 |           m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); | 
 |       if (svd.m_computeFullV) | 
 |         m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); | 
 |       else if (svd.m_computeThinV) { | 
 |         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); | 
 |         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); | 
 |       } | 
 |       if (svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); | 
 |       return true; | 
 |     } else | 
 |       return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
 |   QRType m_qr; | 
 |   WorkspaceType m_workspace; | 
 | }; | 
 |  | 
 | /*** 2x2 SVD implementation | 
 |  *** | 
 |  *** JacobiSVD consists in performing a series of 2x2 SVD subproblems | 
 |  ***/ | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false> { | 
 |   typedef JacobiSVD<MatrixType, Options> SVD; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true> { | 
 |   typedef JacobiSVD<MatrixType, Options> SVD; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) { | 
 |     using std::abs; | 
 |     using std::sqrt; | 
 |     Scalar z; | 
 |     JacobiRotation<Scalar> rot; | 
 |     RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p, p)) + numext::abs2(work_matrix.coeff(q, p))); | 
 |  | 
 |     const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
 |     const RealScalar precision = NumTraits<Scalar>::epsilon(); | 
 |  | 
 |     if (numext::is_exactly_zero(n)) { | 
 |       // make sure first column is zero | 
 |       work_matrix.coeffRef(p, p) = work_matrix.coeffRef(q, p) = Scalar(0); | 
 |  | 
 |       if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) { | 
 |         // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when | 
 |         // computing n | 
 |         z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q); | 
 |         work_matrix.row(p) *= z; | 
 |         if (svd.computeU()) svd.m_matrixU.col(p) *= conj(z); | 
 |       } | 
 |       if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) { | 
 |         z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q); | 
 |         work_matrix.row(q) *= z; | 
 |         if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z); | 
 |       } | 
 |       // otherwise the second row is already zero, so we have nothing to do. | 
 |     } else { | 
 |       rot.c() = conj(work_matrix.coeff(p, p)) / n; | 
 |       rot.s() = work_matrix.coeff(q, p) / n; | 
 |       work_matrix.applyOnTheLeft(p, q, rot); | 
 |       if (svd.computeU()) svd.m_matrixU.applyOnTheRight(p, q, rot.adjoint()); | 
 |       if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) { | 
 |         z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q); | 
 |         work_matrix.col(q) *= z; | 
 |         if (svd.computeV()) svd.m_matrixV.col(q) *= z; | 
 |       } | 
 |       if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) { | 
 |         z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q); | 
 |         work_matrix.row(q) *= z; | 
 |         if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z); | 
 |       } | 
 |     } | 
 |  | 
 |     // update largest diagonal entry | 
 |     maxDiagEntry = numext::maxi<RealScalar>( | 
 |         maxDiagEntry, numext::maxi<RealScalar>(abs(work_matrix.coeff(p, p)), abs(work_matrix.coeff(q, q)))); | 
 |     // and check whether the 2x2 block is already diagonal | 
 |     RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); | 
 |     return abs(work_matrix.coeff(p, q)) > threshold || abs(work_matrix.coeff(q, p)) > threshold; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType_, int Options> | 
 | struct traits<JacobiSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> { | 
 |   typedef MatrixType_ MatrixType; | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /** \ingroup SVD_Module | 
 |  * | 
 |  * | 
 |  * \class JacobiSVD | 
 |  * | 
 |  * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition | 
 |  * \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used | 
 |  * internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin | 
 |  * or full unitaries \a U and \a V. See discussion of possible values below. | 
 |  * | 
 |  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product | 
 |  *   \f[ A = U S V^* \f] | 
 |  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero | 
 |  * outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the | 
 |  * columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively. | 
 |  * | 
 |  * Singular values are always sorted in decreasing order. | 
 |  * | 
 |  * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask | 
 |  * for them explicitly. | 
 |  * | 
 |  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p | 
 |  * matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining | 
 |  * columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking | 
 |  * for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix. | 
 |  * Notice that thin \a U and \a V are all you need for (least squares) solving. | 
 |  * | 
 |  * Here's an example demonstrating basic usage: | 
 |  * \include JacobiSVD_basic.cpp | 
 |  * Output: \verbinclude JacobiSVD_basic.out | 
 |  * | 
 |  * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The | 
 |  * downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is | 
 |  * still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still | 
 |  * of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it | 
 |  * takes advantage of non-squareness in that its complexity is only linear in the greater dimension. | 
 |  * | 
 |  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is | 
 |  * guaranteed to terminate in finite (and reasonable) time. | 
 |  * | 
 |  * The possible QR preconditioners that can be set with Options template parameter are: | 
 |  * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. | 
 |  * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. | 
 |  *     Contrary to other QRs, it doesn't allow computing thin unitaries. | 
 |  * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses | 
 |  * non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing | 
 |  * SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable | 
 |  * than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal | 
 |  * SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that | 
 |  * you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR | 
 |  * preconditioner. Using this option will result in faster compilation and smaller executable code. It won't | 
 |  * significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before | 
 |  * applying it anyway. | 
 |  * | 
 |  * One may also use the Options template parameter to specify how the unitaries should be computed. The options are | 
 |  * #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full | 
 |  * versions of a unitary. By default, unitaries will not be computed. | 
 |  * | 
 |  * You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType, | 
 |  * ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV> | 
 |  * | 
 |  * \sa MatrixBase::jacobiSvd() | 
 |  */ | 
 | template <typename MatrixType_, int Options_> | 
 | class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > { | 
 |   typedef SVDBase<JacobiSVD> Base; | 
 |  | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename Base::Scalar Scalar; | 
 |   typedef typename Base::RealScalar RealScalar; | 
 |   enum : int { | 
 |     Options = Options_, | 
 |     QRPreconditioner = internal::get_qr_preconditioner(Options), | 
 |     RowsAtCompileTime = Base::RowsAtCompileTime, | 
 |     ColsAtCompileTime = Base::ColsAtCompileTime, | 
 |     DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, | 
 |     MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = Base::MaxColsAtCompileTime, | 
 |     MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, | 
 |     MatrixOptions = Base::MatrixOptions | 
 |   }; | 
 |  | 
 |   typedef typename Base::MatrixUType MatrixUType; | 
 |   typedef typename Base::MatrixVType MatrixVType; | 
 |   typedef typename Base::SingularValuesType SingularValuesType; | 
 |   typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, | 
 |                  MaxDiagSizeAtCompileTime> | 
 |       WorkMatrixType; | 
 |  | 
 |   /** \brief Default Constructor. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user intends to | 
 |    * perform decompositions via JacobiSVD::compute(const MatrixType&). | 
 |    */ | 
 |   JacobiSVD() {} | 
 |  | 
 |   /** \brief Default Constructor with memory preallocation | 
 |    * | 
 |    * Like the default constructor but with preallocation of the internal data | 
 |    * according to the specified problem size and \a Options template parameter. | 
 |    * | 
 |    * \sa JacobiSVD() | 
 |    */ | 
 |   JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); } | 
 |  | 
 |   /** \brief Default Constructor with memory preallocation | 
 |    * | 
 |    * Like the default constructor but with preallocation of the internal data | 
 |    * according to the specified problem size. | 
 |    * | 
 |    * One \b cannot request unitaries using both the \a Options template parameter | 
 |    * and the constructor. If possible, prefer using the \a Options template parameter. | 
 |    * | 
 |    * \param rows number of rows for the input matrix | 
 |    * \param cols number of columns for the input matrix | 
 |    * \param computationOptions specify whether to compute Thin/Full unitaries U/V | 
 |    * \sa JacobiSVD() | 
 |    * | 
 |    * \deprecated Will be removed in the next major Eigen version. Options should | 
 |    * be specified in the \a Options template parameter. | 
 |    */ | 
 |   EIGEN_DEPRECATED JacobiSVD(Index rows, Index cols, unsigned int computationOptions) { | 
 |     internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols); | 
 |     allocate(rows, cols, computationOptions); | 
 |   } | 
 |  | 
 |   /** \brief Constructor performing the decomposition of given matrix, using the custom options specified | 
 |    *         with the \a Options template parameter. | 
 |    * | 
 |    * \param matrix the matrix to decompose | 
 |    */ | 
 |   explicit JacobiSVD(const MatrixType& matrix) { compute_impl(matrix, internal::get_computation_options(Options)); } | 
 |  | 
 |   /** \brief Constructor performing the decomposition of given matrix using specified options | 
 |    *         for computing unitaries. | 
 |    * | 
 |    *  One \b cannot request unitiaries using both the \a Options template parameter | 
 |    *  and the constructor. If possible, prefer using the \a Options template parameter. | 
 |    * | 
 |    * \param matrix the matrix to decompose | 
 |    * \param computationOptions specify whether to compute Thin/Full unitaries U/V | 
 |    * | 
 |    * \deprecated Will be removed in the next major Eigen version. Options should | 
 |    * be specified in the \a Options template parameter. | 
 |    */ | 
 |   // EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings. | 
 |   JacobiSVD(const MatrixType& matrix, unsigned int computationOptions) { | 
 |     internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); | 
 |     compute_impl(matrix, computationOptions); | 
 |   } | 
 |  | 
 |   /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified | 
 |    *         using the \a Options template parameter or the class constructor. | 
 |    * | 
 |    * \param matrix the matrix to decompose | 
 |    */ | 
 |   JacobiSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } | 
 |  | 
 |   /** \brief Method performing the decomposition of given matrix, as specified by | 
 |    *         the `computationOptions` parameter. | 
 |    * | 
 |    * \param matrix the matrix to decompose | 
 |    * \param computationOptions specify whether to compute Thin/Full unitaries U/V | 
 |    * | 
 |    * \deprecated Will be removed in the next major Eigen version. Options should | 
 |    * be specified in the \a Options template parameter. | 
 |    */ | 
 |   EIGEN_DEPRECATED JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { | 
 |     internal::check_svd_options_assertions<MatrixType, Options>(m_computationOptions, matrix.rows(), matrix.cols()); | 
 |     return compute_impl(matrix, computationOptions); | 
 |   } | 
 |  | 
 |   using Base::cols; | 
 |   using Base::computeU; | 
 |   using Base::computeV; | 
 |   using Base::diagSize; | 
 |   using Base::rank; | 
 |   using Base::rows; | 
 |  | 
 |   void allocate(Index rows_, Index cols_, unsigned int computationOptions) { | 
 |     if (Base::allocate(rows_, cols_, computationOptions)) return; | 
 |     eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && | 
 |                  !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && | 
 |                  "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " | 
 |                  "Use the ColPivHouseholderQR preconditioner instead."); | 
 |  | 
 |     m_workMatrix.resize(diagSize(), diagSize()); | 
 |     if (cols() > rows()) m_qr_precond_morecols.allocate(*this); | 
 |     if (rows() > cols()) m_qr_precond_morerows.allocate(*this); | 
 |   } | 
 |  | 
 |  private: | 
 |   JacobiSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); | 
 |  | 
 |  protected: | 
 |   using Base::m_computationOptions; | 
 |   using Base::m_computeFullU; | 
 |   using Base::m_computeFullV; | 
 |   using Base::m_computeThinU; | 
 |   using Base::m_computeThinV; | 
 |   using Base::m_info; | 
 |   using Base::m_isAllocated; | 
 |   using Base::m_isInitialized; | 
 |   using Base::m_matrixU; | 
 |   using Base::m_matrixV; | 
 |   using Base::m_nonzeroSingularValues; | 
 |   using Base::m_prescribedThreshold; | 
 |   using Base::m_singularValues; | 
 |   using Base::m_usePrescribedThreshold; | 
 |   using Base::ShouldComputeThinU; | 
 |   using Base::ShouldComputeThinV; | 
 |  | 
 |   EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && | 
 |                           !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)), | 
 |                       "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " | 
 |                       "Use the ColPivHouseholderQR preconditioner instead.") | 
 |  | 
 |   template <typename MatrixType__, int Options__, bool IsComplex_> | 
 |   friend struct internal::svd_precondition_2x2_block_to_be_real; | 
 |   template <typename MatrixType__, int Options__, int QRPreconditioner_, int Case_, bool DoAnything_> | 
 |   friend struct internal::qr_preconditioner_impl; | 
 |  | 
 |   internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> | 
 |       m_qr_precond_morecols; | 
 |   internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> | 
 |       m_qr_precond_morerows; | 
 |   WorkMatrixType m_workMatrix; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int Options> | 
 | JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix, | 
 |                                                                              unsigned int computationOptions) { | 
 |   using std::abs; | 
 |  | 
 |   allocate(matrix.rows(), matrix.cols(), computationOptions); | 
 |  | 
 |   // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number | 
 |   // of iterations, only worsening the precision of U and V as we accumulate more rotations | 
 |   const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); | 
 |  | 
 |   // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) | 
 |   const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
 |  | 
 |   // Scaling factor to reduce over/under-flows | 
 |   RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); | 
 |   if (!(numext::isfinite)(scale)) { | 
 |     m_isInitialized = true; | 
 |     m_info = InvalidInput; | 
 |     m_nonzeroSingularValues = 0; | 
 |     return *this; | 
 |   } | 
 |   if (numext::is_exactly_zero(scale)) scale = RealScalar(1); | 
 |  | 
 |   /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ | 
 |  | 
 |   if (rows() != cols()) { | 
 |     m_qr_precond_morecols.run(*this, matrix / scale); | 
 |     m_qr_precond_morerows.run(*this, matrix / scale); | 
 |   } else { | 
 |     m_workMatrix = | 
 |         matrix.template topLeftCorner<DiagSizeAtCompileTime, DiagSizeAtCompileTime>(diagSize(), diagSize()) / scale; | 
 |     if (m_computeFullU) m_matrixU.setIdentity(rows(), rows()); | 
 |     if (m_computeThinU) m_matrixU.setIdentity(rows(), diagSize()); | 
 |     if (m_computeFullV) m_matrixV.setIdentity(cols(), cols()); | 
 |     if (m_computeThinV) m_matrixV.setIdentity(cols(), diagSize()); | 
 |   } | 
 |  | 
 |   /*** step 2. The main Jacobi SVD iteration. ***/ | 
 |   RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); | 
 |  | 
 |   bool finished = false; | 
 |   while (!finished) { | 
 |     finished = true; | 
 |  | 
 |     // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix | 
 |  | 
 |     for (Index p = 1; p < diagSize(); ++p) { | 
 |       for (Index q = 0; q < p; ++q) { | 
 |         // if this 2x2 sub-matrix is not diagonal already... | 
 |         // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't | 
 |         // keep us iterating forever. Similarly, small denormal numbers are considered zero. | 
 |         RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); | 
 |         if (abs(m_workMatrix.coeff(p, q)) > threshold || abs(m_workMatrix.coeff(q, p)) > threshold) { | 
 |           finished = false; | 
 |           // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal | 
 |           // the complex to real operation returns true if the updated 2x2 block is not already diagonal | 
 |           if (internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q, | 
 |                                                                                         maxDiagEntry)) { | 
 |             JacobiRotation<RealScalar> j_left, j_right; | 
 |             internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); | 
 |  | 
 |             // accumulate resulting Jacobi rotations | 
 |             m_workMatrix.applyOnTheLeft(p, q, j_left); | 
 |             if (computeU()) m_matrixU.applyOnTheRight(p, q, j_left.transpose()); | 
 |  | 
 |             m_workMatrix.applyOnTheRight(p, q, j_right); | 
 |             if (computeV()) m_matrixV.applyOnTheRight(p, q, j_right); | 
 |  | 
 |             // keep track of the largest diagonal coefficient | 
 |             maxDiagEntry = numext::maxi<RealScalar>( | 
 |                 maxDiagEntry, numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p, p)), abs(m_workMatrix.coeff(q, q)))); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values | 
 |    * ***/ | 
 |  | 
 |   for (Index i = 0; i < diagSize(); ++i) { | 
 |     // For a complex matrix, some diagonal coefficients might note have been | 
 |     // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part | 
 |     // of some diagonal entry might not be null. | 
 |     if (NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i, i))) > considerAsZero) { | 
 |       RealScalar a = abs(m_workMatrix.coeff(i, i)); | 
 |       m_singularValues.coeffRef(i) = abs(a); | 
 |       if (computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i, i) / a; | 
 |     } else { | 
 |       // m_workMatrix.coeff(i,i) is already real, no difficulty: | 
 |       RealScalar a = numext::real(m_workMatrix.coeff(i, i)); | 
 |       m_singularValues.coeffRef(i) = abs(a); | 
 |       if (computeU() && (a < RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); | 
 |     } | 
 |   } | 
 |  | 
 |   m_singularValues *= scale; | 
 |  | 
 |   /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ | 
 |  | 
 |   m_nonzeroSingularValues = diagSize(); | 
 |   for (Index i = 0; i < diagSize(); i++) { | 
 |     Index pos; | 
 |     RealScalar maxRemainingSingularValue = m_singularValues.tail(diagSize() - i).maxCoeff(&pos); | 
 |     if (numext::is_exactly_zero(maxRemainingSingularValue)) { | 
 |       m_nonzeroSingularValues = i; | 
 |       break; | 
 |     } | 
 |     if (pos) { | 
 |       pos += i; | 
 |       std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); | 
 |       if (computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); | 
 |       if (computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); | 
 |     } | 
 |   } | 
 |  | 
 |   m_isInitialized = true; | 
 |   return *this; | 
 | } | 
 |  | 
 | /** \svd_module | 
 |  * | 
 |  * \return the singular value decomposition of \c *this computed by two-sided | 
 |  * Jacobi transformations. | 
 |  * | 
 |  * \sa class JacobiSVD | 
 |  */ | 
 | template <typename Derived> | 
 | template <int Options> | 
 | JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd() const { | 
 |   return JacobiSVD<PlainObject, Options>(*this); | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | template <int Options> | 
 | JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd( | 
 |     unsigned int computationOptions) const { | 
 |   return JacobiSVD<PlainObject, Options>(*this, computationOptions); | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_JACOBISVD_H |