|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | struct scalar_norm1_op { | 
|  | typedef RealScalar result_type; | 
|  | inline RealScalar operator()(const Scalar &a) const { return Eigen::numext::norm1(a); } | 
|  | }; | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template <> | 
|  | struct functor_traits<scalar_norm1_op> { | 
|  | enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; | 
|  | }; | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum | 
|  | // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n | 
|  | extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(asum))(int *n, RealScalar *px, int *incx) { | 
|  | //   std::cerr << "__asum " << *n << " " << *incx << "\n"; | 
|  | Complex *x = reinterpret_cast<Complex *>(px); | 
|  |  | 
|  | if (*n <= 0) return 0; | 
|  |  | 
|  | if (*incx == 1) | 
|  | return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum(); | 
|  | else | 
|  | return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); | 
|  | } | 
|  |  | 
|  | extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, RealScalar *px, int *incx) { | 
|  | if (*n <= 0) return 0; | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  |  | 
|  | Eigen::DenseIndex ret; | 
|  | if (*incx == 1) | 
|  | make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret); | 
|  | else | 
|  | make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret); | 
|  | return int(ret) + 1; | 
|  | } | 
|  |  | 
|  | extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, RealScalar *px, int *incx) { | 
|  | if (*n <= 0) return 0; | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  |  | 
|  | Eigen::DenseIndex ret; | 
|  | if (*incx == 1) | 
|  | make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret); | 
|  | else | 
|  | make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret); | 
|  | return int(ret) + 1; | 
|  | } | 
|  |  | 
|  | // computes a dot product of a conjugated vector with another vector. | 
|  | EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { | 
|  | //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; | 
|  | Scalar *res = reinterpret_cast<Scalar *>(pres); | 
|  |  | 
|  | if (*n <= 0) { | 
|  | *res = Scalar(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  |  | 
|  | if (*incx == 1 && *incy == 1) | 
|  | *res = (make_vector(x, *n).dot(make_vector(y, *n))); | 
|  | else if (*incx > 0 && *incy > 0) | 
|  | *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy))); | 
|  | else if (*incx < 0 && *incy > 0) | 
|  | *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy))); | 
|  | else if (*incx > 0 && *incy < 0) | 
|  | *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse())); | 
|  | else if (*incx < 0 && *incy < 0) | 
|  | *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse())); | 
|  | } | 
|  |  | 
|  | // computes a vector-vector dot product without complex conjugation. | 
|  | EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { | 
|  | Scalar *res = reinterpret_cast<Scalar *>(pres); | 
|  |  | 
|  | if (*n <= 0) { | 
|  | *res = Scalar(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  |  | 
|  | if (*incx == 1 && *incy == 1) | 
|  | *res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum(); | 
|  | else if (*incx > 0 && *incy > 0) | 
|  | *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum(); | 
|  | else if (*incx < 0 && *incy > 0) | 
|  | *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum(); | 
|  | else if (*incx > 0 && *incy < 0) | 
|  | *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); | 
|  | else if (*incx < 0 && *incy < 0) | 
|  | *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); | 
|  | } | 
|  |  | 
|  | extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(nrm2))(int *n, RealScalar *px, int *incx) { | 
|  | //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; | 
|  | if (*n <= 0) return 0; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  |  | 
|  | if (*incx == 1) return make_vector(x, *n).stableNorm(); | 
|  |  | 
|  | return make_vector(x, *n, *incx).stableNorm(); | 
|  | } | 
|  |  | 
|  | EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot)) | 
|  | (int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { | 
|  | if (*n <= 0) return; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | RealScalar c = *pc; | 
|  | RealScalar s = *ps; | 
|  |  | 
|  | StridedVectorType vx(make_vector(x, *n, std::abs(*incx))); | 
|  | StridedVectorType vy(make_vector(y, *n, std::abs(*incy))); | 
|  |  | 
|  | Eigen::Reverse<StridedVectorType> rvx(vx); | 
|  | Eigen::Reverse<StridedVectorType> rvy(vy); | 
|  |  | 
|  | // TODO implement mixed real-scalar rotations | 
|  | if (*incx < 0 && *incy > 0) | 
|  | Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s)); | 
|  | else if (*incx > 0 && *incy < 0) | 
|  | Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s)); | 
|  | else | 
|  | Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s)); | 
|  | } | 
|  |  | 
|  | EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) { | 
|  | if (*n <= 0) return; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | RealScalar alpha = *palpha; | 
|  |  | 
|  | //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; | 
|  |  | 
|  | if (*incx == 1) | 
|  | make_vector(x, *n) *= alpha; | 
|  | else | 
|  | make_vector(x, *n, std::abs(*incx)) *= alpha; | 
|  | } |