| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template <bool IsInteger> | 
 | struct adjoint_specific; | 
 |  | 
 | template <> | 
 | struct adjoint_specific<true> { | 
 |   template <typename Vec, typename Mat, typename Scalar> | 
 |   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | 
 |     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), | 
 |                                 numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); | 
 |     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), 0)); | 
 |  | 
 |     // check compatibility of dot and adjoint | 
 |     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); | 
 |   } | 
 | }; | 
 |  | 
 | template <> | 
 | struct adjoint_specific<false> { | 
 |   template <typename Vec, typename Mat, typename Scalar> | 
 |   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     using std::abs; | 
 |  | 
 |     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(), v3.norm()); | 
 |     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), | 
 |                                 numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); | 
 |     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), ref)); | 
 |  | 
 |     VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); | 
 |     // check normalized() and normalize() | 
 |     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); | 
 |     v3 = v1; | 
 |     v3.normalize(); | 
 |     VERIFY_IS_APPROX(v1, v1.norm() * v3); | 
 |     VERIFY_IS_APPROX(v3, v1.normalized()); | 
 |     VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); | 
 |  | 
 |     // check null inputs | 
 |     VERIFY_IS_APPROX((v1 * 0).normalized(), (v1 * 0)); | 
 | #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE) | 
 |     RealScalar very_small = (std::numeric_limits<RealScalar>::min)(); | 
 |     VERIFY(numext::is_exactly_zero((v1 * very_small).norm())); | 
 |     VERIFY_IS_APPROX((v1 * very_small).normalized(), (v1 * very_small)); | 
 |     v3 = v1 * very_small; | 
 |     v3.normalize(); | 
 |     VERIFY_IS_APPROX(v3, (v1 * very_small)); | 
 | #endif | 
 |  | 
 |     // check compatibility of dot and adjoint | 
 |     ref = NumTraits<Scalar>::IsInteger ? 0 | 
 |                                        : (std::max)((std::max)(v1.norm(), v2.norm()), | 
 |                                                     (std::max)((square * v2).norm(), (square.adjoint() * v1).norm())); | 
 |     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, | 
 |                                        test_precision<Scalar>())); | 
 |  | 
 |     // check that Random().normalized() works: tricky as the random xpr must be evaluated by | 
 |     // normalized() in order to produce a consistent result. | 
 |     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Scalar = typename MatrixType::Scalar> | 
 | MatrixType RandomMatrix(Index rows, Index cols, Scalar min, Scalar max) { | 
 |   MatrixType M = MatrixType(rows, cols); | 
 |   for (Index i = 0; i < rows; ++i) { | 
 |     for (Index j = 0; j < cols; ++j) { | 
 |       M(i, j) = Eigen::internal::random<Scalar>(min, max); | 
 |     } | 
 |   } | 
 |   return M; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void adjoint(const MatrixType& m) { | 
 |   /* this test covers the following files: | 
 |      Transpose.h Conjugate.h Dot.h | 
 |   */ | 
 |   using std::abs; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
 |   const Index PacketSize = internal::packet_traits<Scalar>::size; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   // Avoid integer overflow by limiting input values. | 
 |   RealScalar rmin = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? NumTraits<Scalar>::IsSigned ? -100 : 0 : -1); | 
 |   RealScalar rmax = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? 100 : 1); | 
 |  | 
 |   MatrixType m1 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), | 
 |              m2 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), m3(rows, cols), | 
 |              square = RandomMatrix<SquareMatrixType>(rows, rows, rmin, rmax); | 
 |   VectorType v1 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), v2 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), | 
 |              v3 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), vzero = VectorType::Zero(rows); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(rmin, rmax), s2 = internal::random<Scalar>(rmin, rmax); | 
 |  | 
 |   // check basic compatibility of adjoint, transpose, conjugate | 
 |   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); | 
 |   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); | 
 |  | 
 |   // check multiplicative behavior | 
 |   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); | 
 |   VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint()); | 
 |  | 
 |   // check basic properties of dot, squaredNorm | 
 |   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1)); | 
 |   VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm()); | 
 |  | 
 |   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); | 
 |  | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1)); | 
 |  | 
 |   // like in testBasicStuff, test operator() to check const-qualification | 
 |   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
 |   VERIFY_IS_APPROX(m1.conjugate()(r, c), numext::conj(m1(r, c))); | 
 |   VERIFY_IS_APPROX(m1.adjoint()(c, r), numext::conj(m1(r, c))); | 
 |  | 
 |   // check inplace transpose | 
 |   m3 = m1; | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3, m1.transpose()); | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3, m1); | 
 |  | 
 |   if (PacketSize < m3.rows() && PacketSize < m3.cols()) { | 
 |     m3 = m1; | 
 |     Index i = internal::random<Index>(0, m3.rows() - PacketSize); | 
 |     Index j = internal::random<Index>(0, m3.cols() - PacketSize); | 
 |     m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace(); | 
 |     VERIFY_IS_APPROX((m3.template block<PacketSize, PacketSize>(i, j)), | 
 |                      (m1.template block<PacketSize, PacketSize>(i, j).transpose())); | 
 |     m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace(); | 
 |     VERIFY_IS_APPROX(m3, m1); | 
 |   } | 
 |  | 
 |   // check inplace adjoint | 
 |   m3 = m1; | 
 |   m3.adjointInPlace(); | 
 |   VERIFY_IS_APPROX(m3, m1.adjoint()); | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3, m1.conjugate()); | 
 |  | 
 |   // check mixed dot product | 
 |   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
 |   RealVectorType rv1 = RandomMatrix<RealVectorType>(rows, 1, rmin, rmax); | 
 |  | 
 |   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); | 
 |   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); | 
 |  | 
 |   VERIFY(is_same_type(m1, m1.template conjugateIf<false>())); | 
 |   VERIFY(is_same_type(m1.conjugate(), m1.template conjugateIf<true>())); | 
 | } | 
 |  | 
 | template <int> | 
 | void adjoint_extra() { | 
 |   MatrixXcf a(10, 10), b(10, 10); | 
 |   VERIFY_RAISES_ASSERT(a = a.transpose()); | 
 |   VERIFY_RAISES_ASSERT(a = a.transpose() + b); | 
 |   VERIFY_RAISES_ASSERT(a = b + a.transpose()); | 
 |   VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); | 
 |   VERIFY_RAISES_ASSERT(a = a.adjoint()); | 
 |   VERIFY_RAISES_ASSERT(a = a.adjoint() + b); | 
 |   VERIFY_RAISES_ASSERT(a = b + a.adjoint()); | 
 |  | 
 |   // no assertion should be triggered for these cases: | 
 |   a.transpose() = a.transpose(); | 
 |   a.transpose() += a.transpose(); | 
 |   a.transpose() += a.transpose() + b; | 
 |   a.transpose() = a.adjoint(); | 
 |   a.transpose() += a.adjoint(); | 
 |   a.transpose() += a.adjoint() + b; | 
 |  | 
 |   // regression tests for check_for_aliasing | 
 |   MatrixXd c(10, 10); | 
 |   c = 1.0 * MatrixXd::Ones(10, 10) + c; | 
 |   c = MatrixXd::Ones(10, 10) * 1.0 + c; | 
 |   c = c + MatrixXd::Ones(10, 10).cwiseProduct(MatrixXd::Zero(10, 10)); | 
 |   c = MatrixXd::Ones(10, 10) * MatrixXd::Zero(10, 10); | 
 |  | 
 |   // regression for bug 1646 | 
 |   for (int j = 0; j < 10; ++j) { | 
 |     c.col(j).head(j) = c.row(j).head(j); | 
 |   } | 
 |  | 
 |   for (int j = 0; j < 10; ++j) { | 
 |     c.col(j) = c.row(j); | 
 |   } | 
 |  | 
 |   a.conservativeResize(1, 1); | 
 |   a = a.transpose(); | 
 |  | 
 |   a.conservativeResize(0, 0); | 
 |   a = a.transpose(); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(adjoint) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(adjoint(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(adjoint(Matrix3d())); | 
 |     CALL_SUBTEST_3(adjoint(Matrix4f())); | 
 |  | 
 |     CALL_SUBTEST_4(adjoint(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), | 
 |                                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); | 
 |     CALL_SUBTEST_5(adjoint( | 
 |         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_6(adjoint( | 
 |         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |  | 
 |     // Complement for 128 bits vectorization: | 
 |     CALL_SUBTEST_8(adjoint(Matrix2d())); | 
 |     CALL_SUBTEST_9(adjoint(Matrix<int, 4, 4>())); | 
 |  | 
 |     // 256 bits vectorization: | 
 |     CALL_SUBTEST_10(adjoint(Matrix<float, 8, 8>())); | 
 |     CALL_SUBTEST_11(adjoint(Matrix<double, 4, 4>())); | 
 |     CALL_SUBTEST_12(adjoint(Matrix<int, 8, 8>())); | 
 |   } | 
 |   // test a large static matrix only once | 
 |   CALL_SUBTEST_7(adjoint(Matrix<float, 100, 100>())); | 
 |  | 
 |   CALL_SUBTEST_13(adjoint_extra<0>()); | 
 | } |