|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include <vector> | 
|  | #include "main.h" | 
|  | #include "random_without_cast_overflow.h" | 
|  |  | 
|  | // suppress annoying unsigned integer warnings | 
|  | template <typename Scalar, bool IsSigned = NumTraits<Scalar>::IsSigned> | 
|  | struct negative_or_zero_impl { | 
|  | static Scalar run(const Scalar& a) { return -a; } | 
|  | }; | 
|  | template <typename Scalar> | 
|  | struct negative_or_zero_impl<Scalar, false> { | 
|  | static Scalar run(const Scalar&) { return 0; } | 
|  | }; | 
|  | template <typename Scalar> | 
|  | Scalar negative_or_zero(const Scalar& a) { | 
|  | return negative_or_zero_impl<Scalar>::run(a); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, std::enable_if_t<NumTraits<Scalar>::IsInteger, int> = 0> | 
|  | std::vector<Scalar> special_values() { | 
|  | const Scalar zero = Scalar(0); | 
|  | const Scalar one = Scalar(1); | 
|  | const Scalar two = Scalar(2); | 
|  | const Scalar three = Scalar(3); | 
|  | const Scalar min = (std::numeric_limits<Scalar>::min)(); | 
|  | const Scalar max = (std::numeric_limits<Scalar>::max)(); | 
|  | return {zero, min, one, two, three, max}; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, std::enable_if_t<!NumTraits<Scalar>::IsInteger, int> = 0> | 
|  | std::vector<Scalar> special_values() { | 
|  | const Scalar zero = Scalar(0); | 
|  | const Scalar eps = Eigen::NumTraits<Scalar>::epsilon(); | 
|  | const Scalar one_half = Scalar(0.5); | 
|  | const Scalar one = Scalar(1); | 
|  | const Scalar two = Scalar(2); | 
|  | const Scalar three = Scalar(3); | 
|  | const Scalar sqrt_half = Scalar(std::sqrt(0.5)); | 
|  | const Scalar sqrt2 = Scalar(std::sqrt(2)); | 
|  | const Scalar inf = Eigen::NumTraits<Scalar>::infinity(); | 
|  | const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN(); | 
|  | // For 32-bit arm, working within or near the subnormal range can lead to incorrect results | 
|  | // due to FTZ. | 
|  | const Scalar denorm_min = EIGEN_ARCH_ARM ? zero : std::numeric_limits<Scalar>::denorm_min(); | 
|  | const Scalar min = | 
|  | EIGEN_ARCH_ARM ? Scalar(1.1) * (std::numeric_limits<Scalar>::min)() : (std::numeric_limits<Scalar>::min)(); | 
|  | const Scalar max = (std::numeric_limits<Scalar>::max)(); | 
|  | const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps; | 
|  | std::vector<Scalar> values = {zero,  denorm_min, min,   eps,     sqrt_half, one_half, one, | 
|  | sqrt2, two,        three, max_exp, max,       inf,      nan}; | 
|  | std::vector<Scalar> signed_values; | 
|  | for (Scalar value : values) { | 
|  | signed_values.push_back(value); | 
|  | signed_values.push_back(-value); | 
|  | } | 
|  | return signed_values; | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void special_value_pairs(Array<Scalar, Dynamic, Dynamic>& x, Array<Scalar, Dynamic, Dynamic>& y) { | 
|  | std::vector<Scalar> vals = special_values<Scalar>(); | 
|  | std::size_t num_cases = vals.size() * vals.size(); | 
|  | // ensure both vectorized and non-vectorized paths taken | 
|  | const Index num_repeats = 2 * (Index)internal::packet_traits<Scalar>::size + 1; | 
|  | x.resize(num_repeats, num_cases); | 
|  | y.resize(num_repeats, num_cases); | 
|  | int count = 0; | 
|  | for (const Scalar x_case : vals) { | 
|  | for (const Scalar y_case : vals) { | 
|  | for (Index repeat = 0; repeat < num_repeats; ++repeat) { | 
|  | x(repeat, count) = x_case; | 
|  | y(repeat, count) = y_case; | 
|  | } | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Fn, typename RefFn> | 
|  | void binary_op_test(std::string name, Fn fun, RefFn ref) { | 
|  | const Scalar tol = test_precision<Scalar>(); | 
|  | Array<Scalar, Dynamic, Dynamic> lhs; | 
|  | Array<Scalar, Dynamic, Dynamic> rhs; | 
|  | special_value_pairs(lhs, rhs); | 
|  |  | 
|  | Array<Scalar, Dynamic, Dynamic> actual = fun(lhs, rhs); | 
|  | bool all_pass = true; | 
|  | for (Index i = 0; i < lhs.rows(); ++i) { | 
|  | for (Index j = 0; j < lhs.cols(); ++j) { | 
|  | Scalar e = static_cast<Scalar>(ref(lhs(i, j), rhs(i, j))); | 
|  | Scalar a = actual(i, j); | 
|  | #if EIGEN_ARCH_ARM | 
|  | // Work around NEON flush-to-zero mode. | 
|  | // If ref returns a subnormal value and Eigen returns 0, then skip the test. | 
|  | if (a == Scalar(0) && (e > -(std::numeric_limits<Scalar>::min)() && e < (std::numeric_limits<Scalar>::min)()) && | 
|  | (e <= -std::numeric_limits<Scalar>::denorm_min() || e >= std::numeric_limits<Scalar>::denorm_min())) { | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || | 
|  | ((numext::isnan)(a) && (numext::isnan)(e)); | 
|  | if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); | 
|  | all_pass &= success; | 
|  | if (!success) { | 
|  | std::cout << name << "(" << lhs(i, j) << "," << rhs(i, j) << ") = " << a << " !=  " << e << std::endl; | 
|  | } | 
|  | } | 
|  | } | 
|  | VERIFY(all_pass); | 
|  | } | 
|  |  | 
|  | #define BINARY_FUNCTOR_TEST_ARGS(fun)                                        \ | 
|  | #fun, [](const auto& x_, const auto& y_) { return (Eigen::fun)(x_, y_); }, \ | 
|  | [](const auto& x_, const auto& y_) { return (std::fun)(x_, y_); } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void binary_ops_test() { | 
|  | binary_op_test<Scalar>(BINARY_FUNCTOR_TEST_ARGS(pow)); | 
|  | #ifndef EIGEN_COMP_MSVC | 
|  | binary_op_test<Scalar>(BINARY_FUNCTOR_TEST_ARGS(atan2)); | 
|  | #else | 
|  | binary_op_test<Scalar>( | 
|  | "atan2", [](const auto& x, const auto& y) { return Eigen::atan2(x, y); }, | 
|  | [](Scalar x, Scalar y) { | 
|  | auto t = Scalar(std::atan2(x, y)); | 
|  | // Work around MSVC return value on underflow. | 
|  | // |atan(y/x)| is bounded above by |y/x|, so on underflow return y/x according to POSIX spec. | 
|  | // MSVC otherwise returns denorm_min. | 
|  | if (EIGEN_PREDICT_FALSE(std::abs(t) == std::numeric_limits<decltype(t)>::denorm_min())) { | 
|  | return x / y; | 
|  | } | 
|  | return t; | 
|  | }); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Fn, typename RefFn> | 
|  | void unary_op_test(std::string name, Fn fun, RefFn ref) { | 
|  | const Scalar tol = test_precision<Scalar>(); | 
|  | auto values = special_values<Scalar>(); | 
|  | Map<Array<Scalar, Dynamic, 1>> valuesMap(values.data(), values.size()); | 
|  |  | 
|  | Array<Scalar, Dynamic, Dynamic> actual = fun(valuesMap); | 
|  | bool all_pass = true; | 
|  | for (Index i = 0; i < valuesMap.size(); ++i) { | 
|  | Scalar e = static_cast<Scalar>(ref(valuesMap(i))); | 
|  | Scalar a = actual(i); | 
|  | #if EIGEN_ARCH_ARM | 
|  | // Work around NEON flush-to-zero mode. | 
|  | // If ref returns a subnormal value and Eigen returns 0, then skip the test. | 
|  | if (a == Scalar(0) && (e > -(std::numeric_limits<Scalar>::min)() && e < (std::numeric_limits<Scalar>::min)()) && | 
|  | (e <= -std::numeric_limits<Scalar>::denorm_min() || e >= std::numeric_limits<Scalar>::denorm_min())) { | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || | 
|  | ((numext::isnan)(a) && (numext::isnan)(e)); | 
|  | if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); | 
|  | all_pass &= success; | 
|  | if (!success) { | 
|  | std::cout << name << "(" << valuesMap(i) << ") = " << a << " !=  " << e << std::endl; | 
|  | } | 
|  | } | 
|  | VERIFY(all_pass); | 
|  | } | 
|  |  | 
|  | #define UNARY_FUNCTOR_TEST_ARGS(fun) \ | 
|  | #fun, [](const auto& x_) { return (Eigen::fun)(x_); }, [](const auto& y_) { return (std::fun)(y_); } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void unary_ops_test() { | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sqrt)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cbrt)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(exp)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(exp2)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(log)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sin)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cos)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(tan)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(asin)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(acos)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(atan)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sinh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cosh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(tanh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(asinh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(acosh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(atanh)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(rint)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(floor)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(ceil)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(round)); | 
|  | unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(trunc)); | 
|  | /* FIXME: Enable when the behavior of rsqrt on denormals for half and double is fixed. | 
|  | unary_op_test<Scalar>("rsqrt", | 
|  | [](const auto& x) { return Eigen::rsqrt(x); }, | 
|  | [](Scalar x) { | 
|  | if (x >= 0 && x < (std::numeric_limits<Scalar>::min)()) { | 
|  | // rsqrt return +inf for positive subnormals. | 
|  | return NumTraits<Scalar>::infinity(); | 
|  | } else { | 
|  | return  Scalar(std::sqrt(Scalar(1)/x)); | 
|  | } | 
|  | }); | 
|  | */ | 
|  | } | 
|  |  | 
|  | template <typename Base, typename Exponent, bool ExpIsInteger = NumTraits<Exponent>::IsInteger> | 
|  | struct ref_pow { | 
|  | static Base run(Base base, Exponent exponent) { | 
|  | EIGEN_USING_STD(pow); | 
|  | return static_cast<Base>(pow(base, static_cast<Base>(exponent))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Base, typename Exponent> | 
|  | struct ref_pow<Base, Exponent, true> { | 
|  | static Base run(Base base, Exponent exponent) { | 
|  | EIGEN_USING_STD(pow); | 
|  | return static_cast<Base>(pow(base, exponent)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Exponent, bool ExpIsInteger = NumTraits<Exponent>::IsInteger> | 
|  | struct pow_helper { | 
|  | static bool is_integer_impl(const Exponent& exp) { return (numext::isfinite)(exp) && exp == numext::floor(exp); } | 
|  | static bool is_odd_impl(const Exponent& exp) { | 
|  | Exponent exp_div_2 = exp / Exponent(2); | 
|  | Exponent floor_exp_div_2 = numext::floor(exp_div_2); | 
|  | return exp_div_2 != floor_exp_div_2; | 
|  | } | 
|  | }; | 
|  | template <typename Exponent> | 
|  | struct pow_helper<Exponent, true> { | 
|  | static bool is_integer_impl(const Exponent&) { return true; } | 
|  | static bool is_odd_impl(const Exponent& exp) { return exp % 2 != 0; } | 
|  | }; | 
|  | template <typename Exponent> | 
|  | bool is_integer(const Exponent& exp) { | 
|  | return pow_helper<Exponent>::is_integer_impl(exp); | 
|  | } | 
|  | template <typename Exponent> | 
|  | bool is_odd(const Exponent& exp) { | 
|  | return pow_helper<Exponent>::is_odd_impl(exp); | 
|  | } | 
|  |  | 
|  | template <typename Base, typename Exponent> | 
|  | void float_pow_test_impl() { | 
|  | const Base tol = test_precision<Base>(); | 
|  | std::vector<Base> abs_base_vals = special_values<Base>(); | 
|  | std::vector<Exponent> abs_exponent_vals = special_values<Exponent>(); | 
|  | for (int i = 0; i < 100; i++) { | 
|  | abs_base_vals.push_back(internal::random<Base>(Base(0), Base(10))); | 
|  | abs_exponent_vals.push_back(internal::random<Exponent>(Exponent(0), Exponent(10))); | 
|  | } | 
|  | const Index num_repeats = internal::packet_traits<Base>::size + 1; | 
|  | ArrayX<Base> bases(num_repeats), eigenPow(num_repeats); | 
|  | bool all_pass = true; | 
|  | for (Base abs_base : abs_base_vals) | 
|  | for (Base base : {negative_or_zero(abs_base), abs_base}) { | 
|  | bases.setConstant(base); | 
|  | for (Exponent abs_exponent : abs_exponent_vals) { | 
|  | for (Exponent exponent : {negative_or_zero(abs_exponent), abs_exponent}) { | 
|  | eigenPow = bases.pow(exponent); | 
|  | for (Index j = 0; j < num_repeats; j++) { | 
|  | Base e = ref_pow<Base, Exponent>::run(bases(j), exponent); | 
|  | if (is_integer(exponent)) { | 
|  | // std::pow may return an incorrect result for a very large integral exponent | 
|  | // if base is negative and the exponent is odd, then the result must be negative | 
|  | // if std::pow returns otherwise, flip the sign | 
|  | bool exp_is_odd = is_odd(exponent); | 
|  | bool base_is_neg = !(numext::isnan)(base) && (bool)numext::signbit(base); | 
|  | bool result_is_neg = exp_is_odd && base_is_neg; | 
|  | bool ref_is_neg = !(numext::isnan)(e) && (bool)numext::signbit(e); | 
|  | bool flip_sign = result_is_neg != ref_is_neg; | 
|  | if (flip_sign) e = -e; | 
|  | } | 
|  |  | 
|  | Base a = eigenPow(j); | 
|  | #ifdef EIGEN_COMP_MSVC | 
|  | // Work around MSVC return value on underflow. | 
|  | // if std::pow returns 0 and Eigen returns a denormalized value, then skip the test | 
|  | int eigen_fpclass = std::fpclassify(a); | 
|  | if (e == Base(0) && eigen_fpclass == FP_SUBNORMAL) continue; | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_VECTORIZE_NEON | 
|  | // Work around NEON flush-to-zero mode | 
|  | // if std::pow returns denormalized value and Eigen returns 0, then skip the test | 
|  | int ref_fpclass = std::fpclassify(e); | 
|  | if (a == Base(0) && ref_fpclass == FP_SUBNORMAL) continue; | 
|  | #endif | 
|  |  | 
|  | bool both_nan = (numext::isnan)(a) && (numext::isnan)(e); | 
|  | bool exact_or_approx = (a == e) || internal::isApprox(a, e, tol); | 
|  | bool same_sign = (bool)numext::signbit(e) == (bool)numext::signbit(a); | 
|  | bool success = both_nan || (exact_or_approx && same_sign); | 
|  | all_pass &= success; | 
|  | if (!success) { | 
|  | std::cout << "Base type: " << type_name(base) << ", Exponent type: " << type_name(exponent) << std::endl; | 
|  | std::cout << "pow(" << bases(j) << "," << exponent << ")   =   " << a << " !=  " << e << std::endl; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | VERIFY(all_pass); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename ScalarExponent> | 
|  | Scalar calc_overflow_threshold(const ScalarExponent exponent) { | 
|  | EIGEN_USING_STD(exp2); | 
|  | EIGEN_USING_STD(log2); | 
|  | EIGEN_STATIC_ASSERT((NumTraits<Scalar>::digits() < 2 * NumTraits<double>::digits()), BASE_TYPE_IS_TOO_BIG); | 
|  |  | 
|  | if (exponent < 2) | 
|  | return NumTraits<Scalar>::highest(); | 
|  | else { | 
|  | // base^e <= highest ==> base <= 2^(log2(highest)/e) | 
|  | // For floating-point types, consider the bound for integer values that can be reproduced exactly = 2 ^ digits | 
|  | double highest_bits = numext::mini(static_cast<double>(NumTraits<Scalar>::digits()), | 
|  | static_cast<double>(log2(NumTraits<Scalar>::highest()))); | 
|  | return static_cast<Scalar>(numext::floor(exp2(highest_bits / static_cast<double>(exponent)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Base, typename Exponent> | 
|  | void test_exponent(Exponent exponent) { | 
|  | EIGEN_STATIC_ASSERT(NumTraits<Base>::IsInteger, THIS TEST IS ONLY INTENDED FOR BASE INTEGER TYPES) | 
|  | const Base max_abs_bases = static_cast<Base>(10000); | 
|  | // avoid integer overflow in Base type | 
|  | Base threshold = calc_overflow_threshold<Base, Exponent>(numext::abs(exponent)); | 
|  | // avoid numbers that can't be verified with std::pow | 
|  | double double_threshold = calc_overflow_threshold<double, Exponent>(numext::abs(exponent)); | 
|  | // use the lesser of these two thresholds | 
|  | Base testing_threshold = | 
|  | static_cast<double>(threshold) < double_threshold ? threshold : static_cast<Base>(double_threshold); | 
|  | // test both vectorized and non-vectorized code paths | 
|  | const Index array_size = 2 * internal::packet_traits<Base>::size + 1; | 
|  |  | 
|  | Base max_base = numext::mini(testing_threshold, max_abs_bases); | 
|  | Base min_base = negative_or_zero(max_base); | 
|  |  | 
|  | ArrayX<Base> x(array_size), y(array_size); | 
|  | bool all_pass = true; | 
|  | for (Base base = min_base; base <= max_base; base++) { | 
|  | if (exponent < 0 && base == 0) continue; | 
|  | x.setConstant(base); | 
|  | y = x.pow(exponent); | 
|  | for (Base a : y) { | 
|  | Base e = ref_pow<Base, Exponent>::run(base, exponent); | 
|  | bool pass = (a == e); | 
|  | all_pass &= pass; | 
|  | if (!pass) { | 
|  | std::cout << "pow(" << base << "," << exponent << ")   =   " << a << " !=  " << e << std::endl; | 
|  | } | 
|  | } | 
|  | } | 
|  | VERIFY(all_pass); | 
|  | } | 
|  |  | 
|  | template <typename Base, typename Exponent> | 
|  | void int_pow_test_impl() { | 
|  | Exponent max_exponent = static_cast<Exponent>(NumTraits<Base>::digits()); | 
|  | Exponent min_exponent = negative_or_zero(max_exponent); | 
|  |  | 
|  | for (Exponent exponent = min_exponent; exponent < max_exponent; ++exponent) { | 
|  | test_exponent<Base, Exponent>(exponent); | 
|  | } | 
|  | } | 
|  |  | 
|  | void float_pow_test() { | 
|  | float_pow_test_impl<float, float>(); | 
|  | float_pow_test_impl<double, double>(); | 
|  | } | 
|  |  | 
|  | void mixed_pow_test() { | 
|  | // The following cases will test promoting a smaller exponent type | 
|  | // to a wider base type. | 
|  | float_pow_test_impl<double, int>(); | 
|  | float_pow_test_impl<double, float>(); | 
|  | float_pow_test_impl<float, half>(); | 
|  | float_pow_test_impl<double, half>(); | 
|  | float_pow_test_impl<float, bfloat16>(); | 
|  | float_pow_test_impl<double, bfloat16>(); | 
|  |  | 
|  | // Although in the following cases the exponent cannot be represented exactly | 
|  | // in the base type, we do not perform a conversion, but implement | 
|  | // the operation using repeated squaring. | 
|  | float_pow_test_impl<float, int>(); | 
|  | float_pow_test_impl<double, long long>(); | 
|  |  | 
|  | // The following cases will test promoting a wider exponent type | 
|  | // to a narrower base type. This should compile but would generate a | 
|  | // deprecation warning: | 
|  | // unary_pow_test<float, double>(); | 
|  | } | 
|  |  | 
|  | void int_pow_test() { | 
|  | int_pow_test_impl<int, int>(); | 
|  | int_pow_test_impl<unsigned int, unsigned int>(); | 
|  | int_pow_test_impl<long long, long long>(); | 
|  | int_pow_test_impl<unsigned long long, unsigned long long>(); | 
|  |  | 
|  | // Although in the following cases the exponent cannot be represented exactly | 
|  | // in the base type, we do not perform a conversion, but implement the | 
|  | // operation using repeated squaring. | 
|  | int_pow_test_impl<long long, int>(); | 
|  | int_pow_test_impl<int, unsigned int>(); | 
|  | int_pow_test_impl<unsigned int, int>(); | 
|  | int_pow_test_impl<long long, unsigned long long>(); | 
|  | int_pow_test_impl<unsigned long long, long long>(); | 
|  | int_pow_test_impl<long long, int>(); | 
|  | } | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template <typename Scalar> | 
|  | struct test_signbit_op { | 
|  | Scalar constexpr operator()(const Scalar& a) const { return numext::signbit(a); } | 
|  | template <typename Packet> | 
|  | inline Packet packetOp(const Packet& a) const { | 
|  | return psignbit(a); | 
|  | } | 
|  | }; | 
|  | template <typename Scalar> | 
|  | struct functor_traits<test_signbit_op<Scalar>> { | 
|  | enum { Cost = 1, PacketAccess = true };  // todo: define HasSignbit flag | 
|  | }; | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | template <typename Scalar> | 
|  | void signbit_test() { | 
|  | const size_t size = 100 * internal::packet_traits<Scalar>::size; | 
|  | ArrayX<Scalar> x(size), y(size); | 
|  | x.setRandom(); | 
|  | std::vector<Scalar> special_vals = special_values<Scalar>(); | 
|  | for (size_t i = 0; i < special_vals.size(); i++) { | 
|  | x(2 * i + 0) = special_vals[i]; | 
|  | x(2 * i + 1) = negative_or_zero(special_vals[i]); | 
|  | } | 
|  | y = x.unaryExpr(internal::test_signbit_op<Scalar>()); | 
|  |  | 
|  | bool all_pass = true; | 
|  | for (size_t i = 0; i < size; i++) { | 
|  | const Scalar ref_val = numext::signbit(x(i)); | 
|  | bool not_same = internal::predux_any(internal::bitwise_helper<Scalar>::bitwise_xor(ref_val, y(i))); | 
|  | if (not_same) std::cout << "signbit(" << x(i) << ") != " << y(i) << "\n"; | 
|  | all_pass = all_pass && !not_same; | 
|  | } | 
|  |  | 
|  | VERIFY(all_pass); | 
|  | } | 
|  | void signbit_tests() { | 
|  | signbit_test<float>(); | 
|  | signbit_test<double>(); | 
|  | signbit_test<Eigen::half>(); | 
|  | signbit_test<Eigen::bfloat16>(); | 
|  | signbit_test<int8_t>(); | 
|  | signbit_test<int16_t>(); | 
|  | signbit_test<int32_t>(); | 
|  | signbit_test<int64_t>(); | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void array_generic(const ArrayType& m) { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename ArrayType::RealScalar RealScalar; | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | 
|  | typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols); | 
|  | if (NumTraits<RealScalar>::IsInteger && NumTraits<RealScalar>::IsSigned && !NumTraits<Scalar>::IsComplex) { | 
|  | // Here we cap the size of the values in m1 such that pow(3)/cube() | 
|  | // doesn't overflow and result in undefined behavior. Notice that because | 
|  | // pow(int, int) promotes its inputs and output to double (according to | 
|  | // the C++ standard), we have to make sure that the result fits in 53 bits | 
|  | // for int64, | 
|  | RealScalar max_val = | 
|  | numext::mini(RealScalar(std::cbrt(NumTraits<RealScalar>::highest())), RealScalar(std::cbrt(1LL << 53))) / 2; | 
|  | m1.array() = (m1.abs().array() <= max_val).select(m1, Scalar(max_val)); | 
|  | } | 
|  | ArrayType m2 = ArrayType::Random(rows, cols), m3(rows, cols); | 
|  | ArrayType m4 = m1;  // copy constructor | 
|  | VERIFY_IS_APPROX(m1, m4); | 
|  |  | 
|  | ColVectorType cv1 = ColVectorType::Random(rows); | 
|  | RowVectorType rv1 = RowVectorType::Random(cols); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); | 
|  |  | 
|  | // scalar addition | 
|  | VERIFY_IS_APPROX(m1 + s1, s1 + m1); | 
|  | VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows, cols, s1) + m1); | 
|  | VERIFY_IS_APPROX(s1 - m1, (-m1) + s1); | 
|  | VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows, cols, s1)); | 
|  | VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows, cols, s1) - m1); | 
|  | VERIFY_IS_APPROX((m1 * Scalar(2)) - s2, (m1 + m1) - ArrayType::Constant(rows, cols, s2)); | 
|  | m3 = m1; | 
|  | m3 += s2; | 
|  | VERIFY_IS_APPROX(m3, m1 + s2); | 
|  | m3 = m1; | 
|  | m3 -= s1; | 
|  | VERIFY_IS_APPROX(m3, m1 - s1); | 
|  |  | 
|  | // scalar operators via Maps | 
|  | m3 = m1; | 
|  | m4 = m1; | 
|  | ArrayType::Map(m4.data(), m4.rows(), m4.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m4, m3 - m2); | 
|  |  | 
|  | m3 = m1; | 
|  | m4 = m1; | 
|  | ArrayType::Map(m4.data(), m4.rows(), m4.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m4, m3 + m2); | 
|  |  | 
|  | m3 = m1; | 
|  | m4 = m1; | 
|  | ArrayType::Map(m4.data(), m4.rows(), m4.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m4, m3 * m2); | 
|  |  | 
|  | m3 = m1; | 
|  | m4 = m1; | 
|  | m2 = ArrayType::Random(rows, cols); | 
|  | m2 = (m2 == 0).select(1, m2); | 
|  | ArrayType::Map(m4.data(), m4.rows(), m4.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m4, m3 / m2); | 
|  |  | 
|  | // reductions | 
|  | VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); | 
|  | VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); | 
|  | using numext::abs; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); | 
|  | if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1 + m2).sum()), m1.abs().sum(), test_precision<Scalar>())) | 
|  | VERIFY_IS_NOT_APPROX(((m1 + m2).rowwise().sum()).sum(), m1.sum()); | 
|  | VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar, Scalar>())); | 
|  |  | 
|  | // vector-wise ops | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
|  |  | 
|  | // Conversion from scalar | 
|  | VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows, cols, s1)); | 
|  | VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows, cols, 1)); | 
|  | VERIFY_IS_APPROX((m3.topLeftCorner(rows, cols) = 1), ArrayType::Constant(rows, cols, 1)); | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime == Dynamic ? 2 : ArrayType::RowsAtCompileTime, | 
|  | ArrayType::ColsAtCompileTime == Dynamic ? 2 : ArrayType::ColsAtCompileTime, ArrayType::Options> | 
|  | FixedArrayType; | 
|  | { | 
|  | FixedArrayType f1(s1); | 
|  | VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); | 
|  | FixedArrayType f2(numext::real(s1)); | 
|  | VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); | 
|  | FixedArrayType f3((int)100 * numext::real(s1)); | 
|  | VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); | 
|  | f1.setRandom(); | 
|  | FixedArrayType f4(f1.data()); | 
|  | VERIFY_IS_APPROX(f4, f1); | 
|  | } | 
|  | { | 
|  | FixedArrayType f1{s1}; | 
|  | VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); | 
|  | FixedArrayType f2{numext::real(s1)}; | 
|  | VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); | 
|  | FixedArrayType f3{(int)100 * numext::real(s1)}; | 
|  | VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); | 
|  | f1.setRandom(); | 
|  | FixedArrayType f4{f1.data()}; | 
|  | VERIFY_IS_APPROX(f4, f1); | 
|  | } | 
|  |  | 
|  | // pow | 
|  | VERIFY_IS_APPROX(m1.pow(2), m1.square()); | 
|  | VERIFY_IS_APPROX(pow(m1, 2), m1.square()); | 
|  | VERIFY_IS_APPROX(m1.pow(3), m1.cube()); | 
|  | VERIFY_IS_APPROX(pow(m1, 3), m1.cube()); | 
|  | VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); | 
|  | VERIFY_IS_APPROX(pow(2 * m1, 3), 8 * m1.cube()); | 
|  | ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1, exponents), m1.square()); | 
|  | VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(2 * m1, exponents), 4 * m1.square()); | 
|  | VERIFY_IS_APPROX((2 * m1).pow(exponents), 4 * m1.square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1, 2 * exponents), m1.square().square()); | 
|  | VERIFY_IS_APPROX(m1.pow(2 * exponents), m1.square().square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1(0, 0), exponents), ArrayType::Constant(rows, cols, m1(0, 0) * m1(0, 0))); | 
|  |  | 
|  | // Check possible conflicts with 1D ctor | 
|  | typedef Array<Scalar, Dynamic, 1> OneDArrayType; | 
|  | { | 
|  | OneDArrayType o1(rows); | 
|  | VERIFY(o1.size() == rows); | 
|  | OneDArrayType o2(static_cast<int>(rows)); | 
|  | VERIFY(o2.size() == rows); | 
|  | } | 
|  | { | 
|  | OneDArrayType o1{rows}; | 
|  | VERIFY(o1.size() == rows); | 
|  | OneDArrayType o4{int(rows)}; | 
|  | VERIFY(o4.size() == rows); | 
|  | } | 
|  | // Check possible conflicts with 2D ctor | 
|  | typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType; | 
|  | typedef Array<Scalar, 2, 1> ArrayType2; | 
|  | { | 
|  | TwoDArrayType o1(rows, cols); | 
|  | VERIFY(o1.rows() == rows); | 
|  | VERIFY(o1.cols() == cols); | 
|  | TwoDArrayType o2(static_cast<int>(rows), static_cast<int>(cols)); | 
|  | VERIFY(o2.rows() == rows); | 
|  | VERIFY(o2.cols() == cols); | 
|  |  | 
|  | ArrayType2 o3(rows, cols); | 
|  | VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); | 
|  | ArrayType2 o4(static_cast<int>(rows), static_cast<int>(cols)); | 
|  | VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); | 
|  | } | 
|  | { | 
|  | TwoDArrayType o1{rows, cols}; | 
|  | VERIFY(o1.rows() == rows); | 
|  | VERIFY(o1.cols() == cols); | 
|  | TwoDArrayType o2{int(rows), int(cols)}; | 
|  | VERIFY(o2.rows() == rows); | 
|  | VERIFY(o2.cols() == cols); | 
|  |  | 
|  | ArrayType2 o3{rows, cols}; | 
|  | VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); | 
|  | ArrayType2 o4{int(rows), int(cols)}; | 
|  | VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void comparisons(const ArrayType& m) { | 
|  | using numext::abs; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; | 
|  |  | 
|  | m4 = (m4.abs() == Scalar(0)).select(1, m4); | 
|  |  | 
|  | // use operator overloads with default return type | 
|  |  | 
|  | VERIFY(((m1 + Scalar(1)) > m1).all()); | 
|  | VERIFY(((m1 - Scalar(1)) < m1).all()); | 
|  | if (rows * cols > 1) { | 
|  | m3 = m1; | 
|  | m3(r, c) += 1; | 
|  | VERIFY(!(m1 < m3).all()); | 
|  | VERIFY(!(m1 > m3).all()); | 
|  | } | 
|  | VERIFY(!(m1 > m2 && m1 < m2).any()); | 
|  | VERIFY((m1 <= m2 || m1 >= m2).all()); | 
|  |  | 
|  | // comparisons array to scalar | 
|  | VERIFY((m1 != (m1(r, c) + 1)).any()); | 
|  | VERIFY((m1 > (m1(r, c) - 1)).any()); | 
|  | VERIFY((m1 < (m1(r, c) + 1)).any()); | 
|  | VERIFY((m1 == m1(r, c)).any()); | 
|  |  | 
|  | // comparisons scalar to array | 
|  | VERIFY(((m1(r, c) + 1) != m1).any()); | 
|  | VERIFY(((m1(r, c) - 1) < m1).any()); | 
|  | VERIFY(((m1(r, c) + 1) > m1).any()); | 
|  | VERIFY((m1(r, c) == m1).any()); | 
|  |  | 
|  | // currently, any() / all() are not vectorized, so use VERIFY_IS_CWISE_EQUAL to test vectorized path | 
|  |  | 
|  | // use typed comparisons, regardless of operator overload behavior | 
|  | typename ArrayType::ConstantReturnType typed_true = ArrayType::Constant(rows, cols, Scalar(1)); | 
|  | // (m1 + Scalar(1)) > m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1), typed_true); | 
|  | // (m1 - Scalar(1)) < m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1), typed_true); | 
|  | // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedEqual(m1 + Scalar(1)), typed_true); | 
|  | // (m1 - Scalar(1)) != m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedNotEqual(m1), typed_true); | 
|  | // (m1 <= m2 || m1 >= m2).all() | 
|  | VERIFY_IS_CWISE_EQUAL(m1.cwiseTypedGreaterOrEqual(m2) || m1.cwiseTypedLessOrEqual(m2), typed_true); | 
|  |  | 
|  | // use boolean comparisons, regardless of operator overload behavior | 
|  | ArrayXX<bool>::ConstantReturnType bool_true = ArrayXX<bool>::Constant(rows, cols, true); | 
|  | // (m1 + Scalar(1)) > m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1), bool_true); | 
|  | // (m1 - Scalar(1)) < m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1), bool_true); | 
|  | // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseEqual(m1 + Scalar(1)), bool_true); | 
|  | // (m1 - Scalar(1)) != m1).all() | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseNotEqual(m1), bool_true); | 
|  | // (m1 <= m2 || m1 >= m2).all() | 
|  | VERIFY_IS_CWISE_EQUAL(m1.cwiseLessOrEqual(m2) || m1.cwiseGreaterOrEqual(m2), bool_true); | 
|  |  | 
|  | // test typed comparisons with scalar argument | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseTypedEqual(Scalar(0)), typed_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseTypedNotEqual(Scalar(0)), typed_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1.minCoeff()), typed_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1.maxCoeff()), typed_true); | 
|  | VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedLessOrEqual(NumTraits<Scalar>::highest()), typed_true); | 
|  | VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedGreaterOrEqual(Scalar(0)), typed_true); | 
|  |  | 
|  | // test boolean comparisons with scalar argument | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseEqual(Scalar(0)), bool_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseNotEqual(Scalar(0)), bool_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1.minCoeff()), bool_true); | 
|  | VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1.maxCoeff()), bool_true); | 
|  | VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseLessOrEqual(NumTraits<Scalar>::highest()), bool_true); | 
|  | VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseGreaterOrEqual(Scalar(0)), bool_true); | 
|  |  | 
|  | // test Select | 
|  | VERIFY_IS_APPROX((m1 < m2).select(m1, m2), m1.cwiseMin(m2)); | 
|  | VERIFY_IS_APPROX((m1 > m2).select(m1, m2), m1.cwiseMax(m2)); | 
|  | Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff()) / Scalar(2); | 
|  | for (int j = 0; j < cols; ++j) | 
|  | for (int i = 0; i < rows; ++i) m3(i, j) = abs(m1(i, j)) < mid ? 0 : m1(i, j); | 
|  | VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(ArrayType::Zero(rows, cols), m1), m3); | 
|  | // shorter versions: | 
|  | VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(0, m1), m3); | 
|  | VERIFY_IS_APPROX((m1.abs() >= ArrayType::Constant(rows, cols, mid)).select(m1, 0), m3); | 
|  | // even shorter version: | 
|  | VERIFY_IS_APPROX((m1.abs() < mid).select(0, m1), m3); | 
|  |  | 
|  | // count | 
|  | VERIFY(((m1.abs() + 1) > RealScalar(0.1)).count() == rows * cols); | 
|  |  | 
|  | // and/or | 
|  | VERIFY((m1 < RealScalar(0) && m1 > RealScalar(0)).count() == 0); | 
|  | VERIFY((m1 < RealScalar(0) || m1 >= RealScalar(0)).count() == rows * cols); | 
|  | RealScalar a = m1.abs().mean(); | 
|  | VERIFY((m1 < -a || m1 > a).count() == (m1.abs() > a).count()); | 
|  |  | 
|  | typedef Array<Index, Dynamic, 1> ArrayOfIndices; | 
|  |  | 
|  | // TODO allows colwise/rowwise for array | 
|  | VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).colwise().count(), | 
|  | ArrayOfIndices::Constant(cols, rows).transpose()); | 
|  | VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void array_real(const ArrayType& m) { | 
|  | using numext::abs; | 
|  | using std::sqrt; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; | 
|  |  | 
|  | // avoid denormalized values so verification doesn't fail on platforms that don't support them | 
|  | // denormalized behavior is tested elsewhere (unary_op_test, binary_ops_test) | 
|  | const Scalar min = (std::numeric_limits<Scalar>::min)(); | 
|  | m1 = (m1.abs() < min).select(Scalar(0), m1); | 
|  | m2 = (m2.abs() < min).select(Scalar(0), m2); | 
|  | m4 = (m4.abs() < min).select(Scalar(1), m4); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | // these tests are mostly to check possible compilation issues with free-functions. | 
|  | VERIFY_IS_APPROX(m1.sin(), sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), cos(m1)); | 
|  | VERIFY_IS_APPROX(m1.tan(), tan(m1)); | 
|  | VERIFY_IS_APPROX(m1.asin(), asin(m1)); | 
|  | VERIFY_IS_APPROX(m1.acos(), acos(m1)); | 
|  | VERIFY_IS_APPROX(m1.atan(), atan(m1)); | 
|  | VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); | 
|  | VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); | 
|  | VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); | 
|  | VERIFY_IS_APPROX(m1.atan2(m2), atan2(m1, m2)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); | 
|  | VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); | 
|  | VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); | 
|  | VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); | 
|  | VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.arg(), arg(m1)); | 
|  | VERIFY_IS_APPROX(m1.round(), round(m1)); | 
|  | VERIFY_IS_APPROX(m1.rint(), rint(m1)); | 
|  | VERIFY_IS_APPROX(m1.floor(), floor(m1)); | 
|  | VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); | 
|  | VERIFY_IS_APPROX(m1.trunc(), trunc(m1)); | 
|  | VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); | 
|  | VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); | 
|  | VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); | 
|  | VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); | 
|  | VERIFY_IS_APPROX(m1.abs(), abs(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); | 
|  | VERIFY_IS_APPROX(m1.square(), square(m1)); | 
|  | VERIFY_IS_APPROX(m1.cube(), cube(m1)); | 
|  | VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); | 
|  | VERIFY_IS_APPROX(m1.sign(), sign(m1)); | 
|  | VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); | 
|  |  | 
|  | // avoid inf and NaNs so verification doesn't fail | 
|  | m3 = m4.abs(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(m3.cbrt(), cbrt(m3)); | 
|  | VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1) / sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(rsqrt(m3), Scalar(1) / sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(m3.log(), log(m3)); | 
|  | VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); | 
|  | VERIFY_IS_APPROX(m3.log10(), log10(m3)); | 
|  | VERIFY_IS_APPROX(m3.log2(), log2(m3)); | 
|  |  | 
|  | VERIFY((!(m1 > m2) == (m1 <= m2)).all()); | 
|  |  | 
|  | VERIFY_IS_APPROX(sin(m1.asin()), m1); | 
|  | VERIFY_IS_APPROX(cos(m1.acos()), m1); | 
|  | VERIFY_IS_APPROX(tan(m1.atan()), m1); | 
|  | VERIFY_IS_APPROX(sinh(m1), Scalar(0.5) * (exp(m1) - exp(-m1))); | 
|  | VERIFY_IS_APPROX(cosh(m1), Scalar(0.5) * (exp(m1) + exp(-m1))); | 
|  | VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5) * (exp(m1) - exp(-m1))) / (Scalar(0.5) * (exp(m1) + exp(-m1)))); | 
|  | VERIFY_IS_APPROX(logistic(m1), (Scalar(1) / (Scalar(1) + exp(-m1)))); | 
|  | VERIFY_IS_APPROX(arg(m1), ((m1 < Scalar(0)).template cast<Scalar>()) * Scalar(std::acos(Scalar(-1)))); | 
|  | VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); | 
|  | VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); | 
|  | VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); | 
|  | VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); | 
|  | VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); | 
|  | VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); | 
|  | VERIFY((Eigen::isnan)((m1 * Scalar(0)) / Scalar(0)).all()); | 
|  | VERIFY((Eigen::isinf)(m4 / Scalar(0)).all()); | 
|  | VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * Scalar(0) / Scalar(0))) && | 
|  | (!(Eigen::isfinite)(m4 / Scalar(0)))) | 
|  | .all()); | 
|  | VERIFY_IS_APPROX(inverse(inverse(m4)), m4); | 
|  | VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); | 
|  | VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); | 
|  | VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); | 
|  | VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); | 
|  | VERIFY_IS_APPROX(m1 * m1.sign(), m1.abs()); | 
|  | VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); | 
|  |  | 
|  | ArrayType tmp = m1.atan2(m2); | 
|  | for (Index i = 0; i < tmp.size(); ++i) { | 
|  | Scalar actual = tmp.array()(i); | 
|  | Scalar expected = Scalar(std::atan2(m1.array()(i), m2.array()(i))); | 
|  | VERIFY_IS_APPROX(actual, expected); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); | 
|  | VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); | 
|  | if (!NumTraits<Scalar>::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); | 
|  |  | 
|  | // shift argument of logarithm so that it is not zero | 
|  | Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber).log(), log(abs(m3) + smallNumber)); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log(), log1p(abs(m3) + smallNumber)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); | 
|  | VERIFY_IS_APPROX(m1.exp(), exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); | 
|  | VERIFY_IS_APPROX(pow(m3, RealScalar(0.5)), m3.sqrt()); | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(1.0 / 3.0)), m3.cbrt()); | 
|  | VERIFY_IS_APPROX(pow(m3, RealScalar(1.0 / 3.0)), m3.cbrt()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); | 
|  | VERIFY_IS_APPROX(pow(m3, RealScalar(-0.5)), m3.rsqrt()); | 
|  |  | 
|  | // Avoid inf and NaN. | 
|  | m3 = (m1.square() < NumTraits<Scalar>::epsilon()).select(Scalar(1), m3); | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); | 
|  |  | 
|  | // Test pow and atan2 on special IEEE values. | 
|  | unary_ops_test<Scalar>(); | 
|  | binary_ops_test<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX(log10(m3), log(m3) / numext::log(Scalar(10))); | 
|  | VERIFY_IS_APPROX(log2(m3), log(m3) / numext::log(Scalar(2))); | 
|  |  | 
|  | // scalar by array division | 
|  | const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); | 
|  | s1 += Scalar(tiny); | 
|  | m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); | 
|  | VERIFY_IS_CWISE_APPROX(s1 / m1, s1 * m1.inverse()); | 
|  |  | 
|  | // check inplace transpose | 
|  | m3 = m1; | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3, m1.transpose()); | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3, m1); | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void array_complex(const ArrayType& m) { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; | 
|  |  | 
|  | m4.real() = (m4.real().abs() == RealScalar(0)).select(RealScalar(1), m4.real()); | 
|  | m4.imag() = (m4.imag().abs() == RealScalar(0)).select(RealScalar(1), m4.imag()); | 
|  |  | 
|  | Array<RealScalar, -1, -1> m3(rows, cols); | 
|  |  | 
|  | for (Index i = 0; i < m.rows(); ++i) | 
|  | for (Index j = 0; j < m.cols(); ++j) m2(i, j) = sqrt(m1(i, j)); | 
|  |  | 
|  | // these tests are mostly to check possible compilation issues with free-functions. | 
|  | VERIFY_IS_APPROX(m1.sin(), sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), cos(m1)); | 
|  | VERIFY_IS_APPROX(m1.tan(), tan(m1)); | 
|  | VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); | 
|  | VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); | 
|  | VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); | 
|  | VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); | 
|  | VERIFY_IS_APPROX(m1.arg(), arg(m1)); | 
|  | VERIFY_IS_APPROX(m1.carg(), carg(m1)); | 
|  | VERIFY_IS_APPROX(arg(m1), carg(m1)); | 
|  | VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); | 
|  | VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); | 
|  | VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); | 
|  | VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); | 
|  | VERIFY_IS_APPROX(m1.log(), log(m1)); | 
|  | VERIFY_IS_APPROX(m1.log10(), log10(m1)); | 
|  | VERIFY_IS_APPROX(m1.log2(), log2(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs(), abs(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); | 
|  | VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); | 
|  | VERIFY_IS_APPROX(m1.square(), square(m1)); | 
|  | VERIFY_IS_APPROX(m1.cube(), cube(m1)); | 
|  | VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); | 
|  | VERIFY_IS_APPROX(m1.sign(), sign(m1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); | 
|  | VERIFY_IS_APPROX(m1.exp(), exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); | 
|  | VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); | 
|  | // Check for larger magnitude complex numbers that expm1 matches exp - 1. | 
|  | VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); | 
|  |  | 
|  | VERIFY_IS_APPROX(sinh(m1), 0.5 * (exp(m1) - exp(-m1))); | 
|  | VERIFY_IS_APPROX(cosh(m1), 0.5 * (exp(m1) + exp(-m1))); | 
|  | VERIFY_IS_APPROX(tanh(m1), (0.5 * (exp(m1) - exp(-m1))) / (0.5 * (exp(m1) + exp(-m1)))); | 
|  | VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); | 
|  | if (m1.size() > 0) { | 
|  | // Complex exponential overflow edge-case. | 
|  | Scalar old_m1_val = m1(0, 0); | 
|  | m1(0, 0) = std::complex<RealScalar>(1000.0, 1000.0); | 
|  | VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); | 
|  | m1(0, 0) = old_m1_val;  // Restore value for future tests. | 
|  | } | 
|  |  | 
|  | for (Index i = 0; i < m.rows(); ++i) | 
|  | for (Index j = 0; j < m.cols(); ++j) m3(i, j) = std::atan2(m1(i, j).imag(), m1(i, j).real()); | 
|  | VERIFY_IS_APPROX(arg(m1), m3); | 
|  | VERIFY_IS_APPROX(carg(m1), m3); | 
|  |  | 
|  | std::complex<RealScalar> zero(0.0, 0.0); | 
|  | VERIFY((Eigen::isnan)(m1 * zero / zero).all()); | 
|  | #if EIGEN_COMP_MSVC | 
|  | // msvc complex division is not robust | 
|  | VERIFY((Eigen::isinf)(m4 / RealScalar(0)).all()); | 
|  | #else | 
|  | #if EIGEN_COMP_CLANG | 
|  | // clang's complex division is notoriously broken too | 
|  | if ((numext::isinf)(m4(0, 0) / RealScalar(0))) { | 
|  | #endif | 
|  | VERIFY((Eigen::isinf)(m4 / zero).all()); | 
|  | #if EIGEN_COMP_CLANG | 
|  | } else { | 
|  | VERIFY((Eigen::isinf)(m4.real() / zero.real()).all()); | 
|  | } | 
|  | #endif | 
|  | #endif  // MSVC | 
|  |  | 
|  | VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * zero / zero)) && (!(Eigen::isfinite)(m1 / zero))).all()); | 
|  |  | 
|  | VERIFY_IS_APPROX(inverse(inverse(m4)), m4); | 
|  | VERIFY_IS_APPROX(conj(m1.conjugate()), m1); | 
|  | VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real()) + square(m1.imag()))); | 
|  | VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); | 
|  | VERIFY_IS_APPROX(log10(m1), log(m1) / log(10)); | 
|  | VERIFY_IS_APPROX(log2(m1), log(m1) / log(2)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); | 
|  | VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); | 
|  |  | 
|  | // scalar by array division | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); | 
|  | s1 += Scalar(tiny); | 
|  | m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); | 
|  | VERIFY_IS_APPROX(s1 / m1, s1 * m1.inverse()); | 
|  |  | 
|  | // check inplace transpose | 
|  | m2 = m1; | 
|  | m2.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m2, m1.transpose()); | 
|  | m2.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m2, m1); | 
|  | // Check vectorized inplace transpose. | 
|  | ArrayType m5 = ArrayType::Random(131, 131); | 
|  | ArrayType m6 = m5; | 
|  | m6.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m6, m5.transpose()); | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void min_max(const ArrayType& m) { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols); | 
|  |  | 
|  | // min/max with array | 
|  | Scalar maxM1 = m1.maxCoeff(); | 
|  | Scalar minM1 = m1.minCoeff(); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(ArrayType::Constant(rows, cols, minM1))); | 
|  | VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows, cols, maxM1))); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(ArrayType::Constant(rows, cols, maxM1))); | 
|  | VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows, cols, minM1))); | 
|  |  | 
|  | // min/max with scalar input | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(minM1)); | 
|  | VERIFY_IS_APPROX(m1, (m1.min)(maxM1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(maxM1)); | 
|  | VERIFY_IS_APPROX(m1, (m1.max)(minM1)); | 
|  |  | 
|  | // min/max with various NaN propagation options. | 
|  | if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) { | 
|  | m1(0, 0) = NumTraits<Scalar>::quiet_NaN(); | 
|  | maxM1 = m1.template maxCoeff<PropagateNaN>(); | 
|  | minM1 = m1.template minCoeff<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(maxM1)); | 
|  | VERIFY((numext::isnan)(minM1)); | 
|  |  | 
|  | maxM1 = m1.template maxCoeff<PropagateNumbers>(); | 
|  | minM1 = m1.template minCoeff<PropagateNumbers>(); | 
|  | VERIFY(!(numext::isnan)(maxM1)); | 
|  | VERIFY(!(numext::isnan)(minM1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct shift_imm_traits { | 
|  | enum { Cost = 1, PacketAccess = internal::packet_traits<Scalar>::HasShift }; | 
|  | }; | 
|  |  | 
|  | template <int N, typename Scalar> | 
|  | struct logical_left_shift_op { | 
|  | Scalar operator()(const Scalar& v) const { return numext::logical_shift_left(v, N); } | 
|  | template <typename Packet> | 
|  | Packet packetOp(const Packet& v) const { | 
|  | return internal::plogical_shift_left<N>(v); | 
|  | } | 
|  | }; | 
|  | template <int N, typename Scalar> | 
|  | struct logical_right_shift_op { | 
|  | Scalar operator()(const Scalar& v) const { return numext::logical_shift_right(v, N); } | 
|  | template <typename Packet> | 
|  | Packet packetOp(const Packet& v) const { | 
|  | return internal::plogical_shift_right<N>(v); | 
|  | } | 
|  | }; | 
|  | template <int N, typename Scalar> | 
|  | struct arithmetic_right_shift_op { | 
|  | Scalar operator()(const Scalar& v) const { return numext::arithmetic_shift_right(v, N); } | 
|  | template <typename Packet> | 
|  | Packet packetOp(const Packet& v) const { | 
|  | return internal::parithmetic_shift_right<N>(v); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template <int N, typename Scalar> | 
|  | struct functor_traits<logical_left_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; | 
|  | template <int N, typename Scalar> | 
|  | struct functor_traits<logical_right_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; | 
|  | template <int N, typename Scalar> | 
|  | struct functor_traits<arithmetic_right_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | template <typename ArrayType> | 
|  | struct shift_test_impl { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | static constexpr size_t Size = sizeof(Scalar); | 
|  | static constexpr size_t MaxShift = (CHAR_BIT * Size) - 1; | 
|  |  | 
|  | template <size_t N = 1> | 
|  | static inline std::enable_if_t<(N > MaxShift), void> run(const ArrayType&) {} | 
|  | template <size_t N = 1> | 
|  | static inline std::enable_if_t<(N <= MaxShift), void> run(const ArrayType& m) { | 
|  | const Index rows = m.rows(); | 
|  | const Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); | 
|  |  | 
|  | m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_left(v, N); }); | 
|  | m3 = m1.unaryExpr(logical_left_shift_op<N, Scalar>()); | 
|  | VERIFY_IS_CWISE_EQUAL(m2, m3); | 
|  |  | 
|  | m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_right(v, N); }); | 
|  | m3 = m1.unaryExpr(logical_right_shift_op<N, Scalar>()); | 
|  | VERIFY_IS_CWISE_EQUAL(m2, m3); | 
|  |  | 
|  | m2 = m1.unaryExpr([](const Scalar& v) { return numext::arithmetic_shift_right(v, N); }); | 
|  | m3 = m1.unaryExpr(arithmetic_right_shift_op<N, Scalar>()); | 
|  | VERIFY_IS_CWISE_EQUAL(m2, m3); | 
|  |  | 
|  | run<N + 1>(m); | 
|  | } | 
|  | }; | 
|  | template <typename ArrayType> | 
|  | void shift_test(const ArrayType& m) { | 
|  | shift_test_impl<ArrayType>::run(m); | 
|  | } | 
|  |  | 
|  | template <typename ArrayType> | 
|  | struct typed_logicals_test_impl { | 
|  | using Scalar = typename ArrayType::Scalar; | 
|  |  | 
|  | static bool scalar_to_bool(const Scalar& x) { return x != Scalar(0); } | 
|  | static Scalar bool_to_scalar(bool x) { return x ? Scalar(1) : Scalar(0); } | 
|  |  | 
|  | static Scalar eval_bool_and(const Scalar& x, const Scalar& y) { | 
|  | return bool_to_scalar(scalar_to_bool(x) && scalar_to_bool(y)); | 
|  | } | 
|  | static Scalar eval_bool_or(const Scalar& x, const Scalar& y) { | 
|  | return bool_to_scalar(scalar_to_bool(x) || scalar_to_bool(y)); | 
|  | } | 
|  | static Scalar eval_bool_xor(const Scalar& x, const Scalar& y) { | 
|  | return bool_to_scalar(scalar_to_bool(x) != scalar_to_bool(y)); | 
|  | } | 
|  | static Scalar eval_bool_not(const Scalar& x) { return bool_to_scalar(!scalar_to_bool(x)); } | 
|  |  | 
|  | static void run(const ArrayType& m) { | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1(rows, cols), m2(rows, cols), m3(rows, cols), m4(rows, cols); | 
|  |  | 
|  | m1.setRandom(); | 
|  | m2.setRandom(); | 
|  | m1 *= ArrayX<bool>::Random(rows, cols).cast<Scalar>(); | 
|  | m2 *= ArrayX<bool>::Random(rows, cols).cast<Scalar>(); | 
|  |  | 
|  | // test boolean and | 
|  | m3 = m1 && m2; | 
|  | m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_and(x, y); }); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  | for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); | 
|  |  | 
|  | // test boolean or | 
|  | m3 = m1 || m2; | 
|  | m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_or(x, y); }); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  | for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); | 
|  |  | 
|  | // test boolean xor | 
|  | m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op<Scalar>()); | 
|  | m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_xor(x, y); }); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  | for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); | 
|  |  | 
|  | // test boolean not | 
|  | m3 = !m1; | 
|  | m4 = m1.unaryExpr([](const Scalar& x) { return eval_bool_not(x); }); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  | for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); | 
|  |  | 
|  | // test something more complicated | 
|  | m3 = m1 && m2; | 
|  | m4 = !(!m1 || !m2); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  |  | 
|  | m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op<Scalar>()); | 
|  | m4 = (!m1).binaryExpr((!m2), internal::scalar_boolean_xor_op<Scalar>()); | 
|  | VERIFY_IS_CWISE_EQUAL(m3, m4); | 
|  |  | 
|  | const size_t bytes = size_t(rows) * size_t(cols) * sizeof(Scalar); | 
|  |  | 
|  | std::vector<uint8_t> m1_buffer(bytes), m2_buffer(bytes), m3_buffer(bytes), m4_buffer(bytes); | 
|  |  | 
|  | std::memcpy(m1_buffer.data(), m1.data(), bytes); | 
|  | std::memcpy(m2_buffer.data(), m2.data(), bytes); | 
|  |  | 
|  | // test bitwise and | 
|  | m3 = m1 & m2; | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] & m2_buffer[i])); | 
|  |  | 
|  | // test bitwise or | 
|  | m3 = m1 | m2; | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] | m2_buffer[i])); | 
|  |  | 
|  | // test bitwise xor | 
|  | m3 = m1 ^ m2; | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] ^ m2_buffer[i])); | 
|  |  | 
|  | // test bitwise not | 
|  | m3 = ~m1; | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(~m1_buffer[i])); | 
|  |  | 
|  | // test something more complicated | 
|  | m3 = m1 & m2; | 
|  | m4 = ~(~m1 | ~m2); | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | std::memcpy(m4_buffer.data(), m4.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); | 
|  |  | 
|  | m3 = m1 ^ m2; | 
|  | m4 = (~m1) ^ (~m2); | 
|  | std::memcpy(m3_buffer.data(), m3.data(), bytes); | 
|  | std::memcpy(m4_buffer.data(), m4.data(), bytes); | 
|  | for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); | 
|  | } | 
|  | }; | 
|  | template <typename ArrayType> | 
|  | void typed_logicals_test(const ArrayType& m) { | 
|  | typed_logicals_test_impl<ArrayType>::run(m); | 
|  | } | 
|  |  | 
|  | template <typename SrcType, typename DstType, int RowsAtCompileTime, int ColsAtCompileTime> | 
|  | struct cast_test_impl { | 
|  | using SrcArray = Array<SrcType, RowsAtCompileTime, ColsAtCompileTime>; | 
|  | using DstArray = Array<DstType, RowsAtCompileTime, ColsAtCompileTime>; | 
|  | struct RandomOp { | 
|  | inline SrcType operator()(const SrcType&) const { | 
|  | return internal::random_without_cast_overflow<SrcType, DstType>::value(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static constexpr int SrcPacketSize = internal::packet_traits<SrcType>::size; | 
|  | static constexpr int DstPacketSize = internal::packet_traits<DstType>::size; | 
|  | static constexpr int MaxPacketSize = internal::plain_enum_max(SrcPacketSize, DstPacketSize); | 
|  |  | 
|  | static void run() { | 
|  | const Index testRows = RowsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : RowsAtCompileTime; | 
|  | const Index testCols = ColsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : ColsAtCompileTime; | 
|  | const Index testSize = testRows * testCols; | 
|  | const Index minTestSize = 100; | 
|  | const Index repeats = numext::div_ceil(minTestSize, testSize); | 
|  |  | 
|  | SrcArray src(testRows, testCols); | 
|  | DstArray dst(testRows, testCols); | 
|  |  | 
|  | for (Index repeat = 0; repeat < repeats; repeat++) { | 
|  | src = src.unaryExpr(RandomOp()); | 
|  | dst = src.template cast<DstType>(); | 
|  |  | 
|  | for (Index j = 0; j < testCols; j++) | 
|  | for (Index i = 0; i < testRows; i++) { | 
|  | SrcType srcVal = src(i, j); | 
|  | DstType refVal = internal::cast_impl<SrcType, DstType>::run(srcVal); | 
|  | DstType dstVal = dst(i, j); | 
|  | bool isApprox = verifyIsApprox(dstVal, refVal); | 
|  | if (!isApprox) | 
|  | std::cout << type_name(srcVal) << ": [" << +srcVal << "] to " << type_name(dstVal) << ": [" << +dstVal | 
|  | << "] != [" << +refVal << "]\n"; | 
|  | VERIFY(isApprox); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int RowsAtCompileTime, int ColsAtCompileTime, typename... ScalarTypes> | 
|  | struct cast_tests_impl { | 
|  | using ScalarTuple = std::tuple<ScalarTypes...>; | 
|  | static constexpr size_t ScalarTupleSize = std::tuple_size<ScalarTuple>::value; | 
|  |  | 
|  | template <size_t i = 0, size_t j = i + 1, bool Done = (i >= ScalarTupleSize - 1) || (j >= ScalarTupleSize)> | 
|  | static std::enable_if_t<Done> run() {} | 
|  |  | 
|  | template <size_t i = 0, size_t j = i + 1, bool Done = (i >= ScalarTupleSize - 1) || (j >= ScalarTupleSize)> | 
|  | static std::enable_if_t<!Done> run() { | 
|  | using Type1 = typename std::tuple_element<i, ScalarTuple>::type; | 
|  | using Type2 = typename std::tuple_element<j, ScalarTuple>::type; | 
|  | cast_test_impl<Type1, Type2, RowsAtCompileTime, ColsAtCompileTime>::run(); | 
|  | cast_test_impl<Type2, Type1, RowsAtCompileTime, ColsAtCompileTime>::run(); | 
|  | static constexpr size_t next_i = (j == ScalarTupleSize - 1) ? (i + 1) : (i + 0); | 
|  | static constexpr size_t next_j = (j == ScalarTupleSize - 1) ? (i + 2) : (j + 1); | 
|  | run<next_i, next_j>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // for now, remove all references to 'long double' until test passes on all platforms | 
|  | template <int RowsAtCompileTime, int ColsAtCompileTime> | 
|  | void cast_test() { | 
|  | cast_tests_impl<RowsAtCompileTime, ColsAtCompileTime, bool, int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, | 
|  | uint32_t, uint64_t, float, double, /*long double, */ half, bfloat16>::run(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(array_cwise) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(array_generic(Array<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(array_generic(Array22f())); | 
|  | CALL_SUBTEST_3(array_generic(Array44d())); | 
|  | CALL_SUBTEST_4(array_generic( | 
|  | ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(array_generic( | 
|  | ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(array_generic( | 
|  | ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(array_generic(Array<Index, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(shift_test( | 
|  | ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_9(shift_test(Array<Index, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_10(array_generic(Array<uint32_t, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_11(array_generic(Array<uint64_t, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(comparisons(Array<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(comparisons(Array22f())); | 
|  | CALL_SUBTEST_3(comparisons(Array44d())); | 
|  | CALL_SUBTEST_7(comparisons( | 
|  | ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(comparisons( | 
|  | ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_6(min_max(Array<float, 1, 1>())); | 
|  | CALL_SUBTEST_7(min_max(Array22f())); | 
|  | CALL_SUBTEST_8(min_max(Array44d())); | 
|  | CALL_SUBTEST_9(min_max( | 
|  | ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_10(min_max( | 
|  | ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_11(array_real(Array<float, 1, 1>())); | 
|  | CALL_SUBTEST_12(array_real(Array22f())); | 
|  | CALL_SUBTEST_13(array_real(Array44d())); | 
|  | CALL_SUBTEST_14(array_real( | 
|  | ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_15(array_real(Array<Eigen::half, 32, 32>())); | 
|  | CALL_SUBTEST_16(array_real(Array<Eigen::bfloat16, 32, 32>())); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_17(array_complex( | 
|  | ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_18(array_complex( | 
|  | ArrayXXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_19(float_pow_test()); | 
|  | CALL_SUBTEST_20(int_pow_test()); | 
|  | CALL_SUBTEST_21(mixed_pow_test()); | 
|  | CALL_SUBTEST_22(signbit_tests()); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_23(typed_logicals_test(ArrayX<int>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_24(typed_logicals_test(ArrayX<float>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_25(typed_logicals_test(ArrayX<double>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_26(typed_logicals_test(ArrayX<std::complex<float>>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_27(typed_logicals_test(ArrayX<std::complex<double>>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_28((cast_test<1, 1>())); | 
|  | CALL_SUBTEST_29((cast_test<3, 1>())); | 
|  | CALL_SUBTEST_30((cast_test<5, 1>())); | 
|  | CALL_SUBTEST_31((cast_test<9, 1>())); | 
|  | CALL_SUBTEST_32((cast_test<17, 1>())); | 
|  | CALL_SUBTEST_33((cast_test<Dynamic, 1>())); | 
|  | } | 
|  |  | 
|  | VERIFY((internal::is_same<internal::global_math_functions_filtering_base<int>::type, int>::value)); | 
|  | VERIFY((internal::is_same<internal::global_math_functions_filtering_base<float>::type, float>::value)); | 
|  | VERIFY((internal::is_same<internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i>>::value)); | 
|  | typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd> Xpr; | 
|  | VERIFY((internal::is_same<internal::global_math_functions_filtering_base<Xpr>::type, ArrayBase<Xpr>>::value)); | 
|  | } |