| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include <iostream> | 
 | #include <fstream> | 
 | #include <iomanip> | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/LevenbergMarquardt> | 
 | using namespace std; | 
 | using namespace Eigen; | 
 |  | 
 | template <typename Scalar> | 
 | struct DenseLM : DenseFunctor<Scalar> { | 
 |   typedef DenseFunctor<Scalar> Base; | 
 |   typedef typename Base::JacobianType JacobianType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> VectorType; | 
 |  | 
 |   DenseLM(int n, int m) : DenseFunctor<Scalar>(n, m) {} | 
 |  | 
 |   VectorType model(const VectorType& uv, VectorType& x) { | 
 |     VectorType y;  // Should change to use expression template | 
 |     int m = Base::values(); | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(uv.size() % 2 == 0); | 
 |     eigen_assert(uv.size() == n); | 
 |     eigen_assert(x.size() == m); | 
 |     y.setZero(m); | 
 |     int half = n / 2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     for (int j = 0; j < m; j++) { | 
 |       for (int i = 0; i < half; i++) y(j) += u(i) * std::exp(-(x(j) - i) * (x(j) - i) / (v(i) * v(i))); | 
 |     } | 
 |     return y; | 
 |   } | 
 |   void initPoints(VectorType& uv_ref, VectorType& x) { | 
 |     m_x = x; | 
 |     m_y = this->model(uv_ref, x); | 
 |   } | 
 |  | 
 |   int operator()(const VectorType& uv, VectorType& fvec) { | 
 |     int m = Base::values(); | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(uv.size() % 2 == 0); | 
 |     eigen_assert(uv.size() == n); | 
 |     eigen_assert(fvec.size() == m); | 
 |     int half = n / 2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     for (int j = 0; j < m; j++) { | 
 |       fvec(j) = m_y(j); | 
 |       for (int i = 0; i < half; i++) { | 
 |         fvec(j) -= u(i) * std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); | 
 |       } | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorType& uv, JacobianType& fjac) { | 
 |     int m = Base::values(); | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(n == uv.size()); | 
 |     eigen_assert(fjac.rows() == m); | 
 |     eigen_assert(fjac.cols() == n); | 
 |     int half = n / 2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     for (int j = 0; j < m; j++) { | 
 |       for (int i = 0; i < half; i++) { | 
 |         fjac.coeffRef(j, i) = -std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); | 
 |         fjac.coeffRef(j, i + half) = -2. * u(i) * (m_x(j) - i) * (m_x(j) - i) / (std::pow(v(i), 3)) * | 
 |                                      std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); | 
 |       } | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   VectorType m_x, m_y;  // Data Points | 
 | }; | 
 |  | 
 | template <typename FunctorType, typename VectorType> | 
 | int test_minimizeLM(FunctorType& functor, VectorType& uv) { | 
 |   LevenbergMarquardt<FunctorType> lm(functor); | 
 |   LevenbergMarquardtSpace::Status info; | 
 |  | 
 |   info = lm.minimize(uv); | 
 |  | 
 |   VERIFY_IS_EQUAL(info, 1); | 
 |   // FIXME Check other parameters | 
 |   return info; | 
 | } | 
 |  | 
 | template <typename FunctorType, typename VectorType> | 
 | int test_lmder(FunctorType& functor, VectorType& uv) { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |   LevenbergMarquardtSpace::Status info; | 
 |   LevenbergMarquardt<FunctorType> lm(functor); | 
 |   info = lm.lmder1(uv); | 
 |  | 
 |   VERIFY_IS_EQUAL(info, 1); | 
 |   // FIXME Check other parameters | 
 |   return info; | 
 | } | 
 |  | 
 | template <typename FunctorType, typename VectorType> | 
 | int test_minimizeSteps(FunctorType& functor, VectorType& uv) { | 
 |   LevenbergMarquardtSpace::Status info; | 
 |   LevenbergMarquardt<FunctorType> lm(functor); | 
 |   info = lm.minimizeInit(uv); | 
 |   if (info == LevenbergMarquardtSpace::ImproperInputParameters) return info; | 
 |   do { | 
 |     info = lm.minimizeOneStep(uv); | 
 |   } while (info == LevenbergMarquardtSpace::Running); | 
 |  | 
 |   VERIFY_IS_EQUAL(info, 1); | 
 |   // FIXME Check other parameters | 
 |   return info; | 
 | } | 
 |  | 
 | template <typename T> | 
 | void test_denseLM_T() { | 
 |   typedef Matrix<T, Dynamic, 1> VectorType; | 
 |  | 
 |   int inputs = 10; | 
 |   int values = 1000; | 
 |   DenseLM<T> dense_gaussian(inputs, values); | 
 |   VectorType uv(inputs), uv_ref(inputs); | 
 |   VectorType x(values); | 
 |  | 
 |   // Generate the reference solution | 
 |   uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3; | 
 |  | 
 |   // Generate the reference data points | 
 |   x.setRandom(); | 
 |   x = 10 * x; | 
 |   x.array() += 10; | 
 |   dense_gaussian.initPoints(uv_ref, x); | 
 |  | 
 |   // Generate the initial parameters | 
 |   VectorBlock<VectorType> u(uv, 0, inputs / 2); | 
 |   VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2); | 
 |  | 
 |   // Solve the optimization problem | 
 |  | 
 |   // Solve in one go | 
 |   u.setOnes(); | 
 |   v.setOnes(); | 
 |   test_minimizeLM(dense_gaussian, uv); | 
 |  | 
 |   // Solve until the machine precision | 
 |   u.setOnes(); | 
 |   v.setOnes(); | 
 |   test_lmder(dense_gaussian, uv); | 
 |  | 
 |   // Solve step by step | 
 |   v.setOnes(); | 
 |   u.setOnes(); | 
 |   test_minimizeSteps(dense_gaussian, uv); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(denseLM) { | 
 |   CALL_SUBTEST_2(test_denseLM_T<double>()); | 
 |  | 
 |   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | 
 | } |