|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void inverse_for_fixed_size(const MatrixType&, std::enable_if_t<MatrixType::SizeAtCompileTime == Dynamic>* = 0) {} | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void inverse_for_fixed_size(const MatrixType& m1, std::enable_if_t<MatrixType::SizeAtCompileTime != Dynamic>* = 0) { | 
|  | using std::abs; | 
|  |  | 
|  | MatrixType m2, identity = MatrixType::Identity(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | // computeInverseAndDetWithCheck tests | 
|  | // First: an invertible matrix | 
|  | bool invertible; | 
|  | Scalar det; | 
|  |  | 
|  | m2.setZero(); | 
|  | m1.computeInverseAndDetWithCheck(m2, det, invertible); | 
|  | VERIFY(invertible); | 
|  | VERIFY_IS_APPROX(identity, m1 * m2); | 
|  | VERIFY_IS_APPROX(det, m1.determinant()); | 
|  |  | 
|  | m2.setZero(); | 
|  | m1.computeInverseWithCheck(m2, invertible); | 
|  | VERIFY(invertible); | 
|  | VERIFY_IS_APPROX(identity, m1 * m2); | 
|  |  | 
|  | // Second: a rank one matrix (not invertible, except for 1x1 matrices) | 
|  | VectorType v3 = VectorType::Random(); | 
|  | MatrixType m3 = v3 * v3.transpose(), m4; | 
|  | m3.computeInverseAndDetWithCheck(m4, det, invertible); | 
|  | VERIFY(m1.rows() == 1 ? invertible : !invertible); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(det - m3.determinant()), RealScalar(1)); | 
|  | m3.computeInverseWithCheck(m4, invertible); | 
|  | VERIFY(m1.rows() == 1 ? invertible : !invertible); | 
|  |  | 
|  | // check with submatrices | 
|  | { | 
|  | Matrix<Scalar, MatrixType::RowsAtCompileTime + 1, MatrixType::RowsAtCompileTime + 1, MatrixType::Options> m5; | 
|  | m5.setRandom(); | 
|  | m5.topLeftCorner(m1.rows(), m1.rows()) = m1; | 
|  | m2 = m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>().inverse(); | 
|  | VERIFY_IS_APPROX((m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>()), | 
|  | m2.inverse()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void inverse(const MatrixType& m) { | 
|  | /* this test covers the following files: | 
|  | Inverse.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows); | 
|  | createRandomPIMatrixOfRank(rows, rows, rows, m1); | 
|  | m2 = m1.inverse(); | 
|  | VERIFY_IS_APPROX(m1, m2.inverse()); | 
|  |  | 
|  | VERIFY_IS_APPROX((Scalar(2) * m2).inverse(), m2.inverse() * Scalar(0.5)); | 
|  |  | 
|  | VERIFY_IS_APPROX(identity, m1.inverse() * m1); | 
|  | VERIFY_IS_APPROX(identity, m1 * m1.inverse()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, m1.inverse().inverse()); | 
|  |  | 
|  | // since for the general case we implement separately row-major and col-major, test that | 
|  | VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); | 
|  |  | 
|  | inverse_for_fixed_size(m1); | 
|  |  | 
|  | // check in-place inversion | 
|  | if (MatrixType::RowsAtCompileTime >= 2 && MatrixType::RowsAtCompileTime <= 4) { | 
|  | // in-place is forbidden | 
|  | VERIFY_RAISES_ASSERT(m1 = m1.inverse()); | 
|  | } else { | 
|  | m2 = m1.inverse(); | 
|  | m1 = m1.inverse(); | 
|  | VERIFY_IS_APPROX(m1, m2); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void inverse_zerosized() { | 
|  | Matrix<Scalar, Dynamic, Dynamic> A(0, 0); | 
|  | { | 
|  | Matrix<Scalar, 0, 1> b, x; | 
|  | x = A.inverse() * b; | 
|  | } | 
|  | { | 
|  | Matrix<Scalar, Dynamic, Dynamic> b(0, 1), x; | 
|  | x = A.inverse() * b; | 
|  | VERIFY_IS_EQUAL(x.rows(), 0); | 
|  | VERIFY_IS_EQUAL(x.cols(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(inverse) { | 
|  | int s = 0; | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(inverse(Matrix<double, 1, 1>())); | 
|  | CALL_SUBTEST_2(inverse(Matrix2d())); | 
|  | CALL_SUBTEST_3(inverse(Matrix3f())); | 
|  | CALL_SUBTEST_4(inverse(Matrix4f())); | 
|  | CALL_SUBTEST_4(inverse(Matrix<float, 4, 4, DontAlign>())); | 
|  |  | 
|  | s = internal::random<int>(50, 320); | 
|  | CALL_SUBTEST_5(inverse(MatrixXf(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | CALL_SUBTEST_5(inverse_zerosized<float>()); | 
|  | CALL_SUBTEST_5(inverse(MatrixXf(0, 0))); | 
|  | CALL_SUBTEST_5(inverse(MatrixXf(1, 1))); | 
|  |  | 
|  | s = internal::random<int>(25, 100); | 
|  | CALL_SUBTEST_6(inverse(MatrixXcd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | CALL_SUBTEST_7(inverse(Matrix4d())); | 
|  | CALL_SUBTEST_7(inverse(Matrix<double, 4, 4, DontAlign>())); | 
|  |  | 
|  | CALL_SUBTEST_8(inverse(Matrix4cd())); | 
|  | } | 
|  | } |