| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #if defined(_MSC_VER) && (_MSC_VER == 1800) | 
 | // This unit test takes forever to compile in Release mode with MSVC 2013, | 
 | // multiple hours. So let's switch off optimization for this one. | 
 | #pragma optimize("", off) | 
 | #endif | 
 |  | 
 | static long int nb_temporaries; | 
 |  | 
 | inline void on_temporary_creation() { | 
 |   // here's a great place to set a breakpoint when debugging failures in this test! | 
 |   nb_temporaries++; | 
 | } | 
 |  | 
 | #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \ | 
 |   { on_temporary_creation(); } | 
 |  | 
 | #include "sparse.h" | 
 |  | 
 | #define VERIFY_EVALUATION_COUNT(XPR, N)                                                   \ | 
 |   {                                                                                       \ | 
 |     nb_temporaries = 0;                                                                   \ | 
 |     CALL_SUBTEST(XPR);                                                                    \ | 
 |     if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ | 
 |     VERIFY((#XPR) && nb_temporaries == N);                                                \ | 
 |   } | 
 |  | 
 | template <typename SparseMatrixType> | 
 | void sparse_product() { | 
 |   typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
 |   Index n = 100; | 
 |   const Index rows = internal::random<Index>(1, n); | 
 |   const Index cols = internal::random<Index>(1, n); | 
 |   const Index depth = internal::random<Index>(1, n); | 
 |   typedef typename SparseMatrixType::Scalar Scalar; | 
 |   enum { Flags = SparseMatrixType::Flags }; | 
 |  | 
 |   double density = (std::max)(8. / (rows * cols), 0.2); | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; | 
 |   typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
 |   typedef Matrix<Scalar, 1, Dynamic> RowDenseVector; | 
 |   typedef SparseVector<Scalar, 0, StorageIndex> ColSpVector; | 
 |   typedef SparseVector<Scalar, RowMajor, StorageIndex> RowSpVector; | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |   Scalar s2 = internal::random<Scalar>(); | 
 |  | 
 |   // test matrix-matrix product | 
 |   { | 
 |     DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); | 
 |     DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); | 
 |     DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); | 
 |     DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); | 
 |     DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); | 
 |     DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); | 
 |     DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); | 
 |     DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); | 
 |     //     DenseVector dv1 = DenseVector::Random(rows); | 
 |     SparseMatrixType m2(rows, depth); | 
 |     SparseMatrixType m2t(depth, rows); | 
 |     SparseMatrixType m3(depth, cols); | 
 |     SparseMatrixType m3t(cols, depth); | 
 |     SparseMatrixType m4(rows, cols); | 
 |     SparseMatrixType m4t(cols, rows); | 
 |     SparseMatrixType m6(rows, rows); | 
 |     initSparse(density, refMat2, m2); | 
 |     initSparse(density, refMat2t, m2t); | 
 |     initSparse(density, refMat3, m3); | 
 |     initSparse(density, refMat3t, m3t); | 
 |     initSparse(density, refMat4, m4); | 
 |     initSparse(density, refMat4t, m4t); | 
 |     initSparse(density, refMat6, m6); | 
 |  | 
 |     //     int c = internal::random<int>(0,depth-1); | 
 |  | 
 |     // sparse * sparse | 
 |     VERIFY_IS_APPROX(m4 = m2 * m3, refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(m4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(m4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(m4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); | 
 |  | 
 |     VERIFY_IS_APPROX(m4 = m2 * m3 / s1, refMat4 = refMat2 * refMat3 / s1); | 
 |     VERIFY_IS_APPROX(m4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1); | 
 |     VERIFY_IS_APPROX(m4 = s2 * m2 * m3 * s1, refMat4 = s2 * refMat2 * refMat3 * s1); | 
 |     VERIFY_IS_APPROX(m4 = (m2 + m2) * m3, refMat4 = (refMat2 + refMat2) * refMat3); | 
 |     VERIFY_IS_APPROX(m4 = m2 * m3.leftCols(cols / 2), refMat4 = refMat2 * refMat3.leftCols(cols / 2)); | 
 |     VERIFY_IS_APPROX(m4 = m2 * (m3 + m3).leftCols(cols / 2), | 
 |                      refMat4 = refMat2 * (refMat3 + refMat3).leftCols(cols / 2)); | 
 |  | 
 |     VERIFY_IS_APPROX(m4 = (m2 * m3).pruned(0), refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3).pruned(0), refMat4 = refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3t.transpose()).pruned(0), | 
 |                      refMat4 = refMat2t.transpose() * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(m4 = (m2 * m3t.transpose()).pruned(0), refMat4 = refMat2 * refMat3t.transpose()); | 
 |  | 
 | #ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT | 
 |     // make sure the right product implementation is called: | 
 |     if ((!SparseMatrixType::IsRowMajor) && m2.rows() <= m3.cols()) { | 
 |       VERIFY_EVALUATION_COUNT(m4 = m2 * m3, 2);  // 2 for transposing and get a sorted result. | 
 |       VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).pruned(0), 1); | 
 |       VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).eval().pruned(0), 4); | 
 |     } | 
 | #endif | 
 |  | 
 |     // and that pruning is effective: | 
 |     { | 
 |       DenseMatrix Ad(2, 2); | 
 |       Ad << -1, 1, 1, 1; | 
 |       SparseMatrixType As(Ad.sparseView()), B(2, 2); | 
 |       VERIFY_IS_EQUAL((As * As.transpose()).eval().nonZeros(), 4); | 
 |       VERIFY_IS_EQUAL((Ad * Ad.transpose()).eval().sparseView().eval().nonZeros(), 2); | 
 |       VERIFY_IS_EQUAL((As * As.transpose()).pruned(1e-6).eval().nonZeros(), 2); | 
 |     } | 
 |  | 
 |     // dense ?= sparse * sparse | 
 |     VERIFY_IS_APPROX(dm4 = m2 * m3, refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 += m2 * m3, refMat4 += refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 -= m2 * m3, refMat4 -= refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3, refMat4 += refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3, refMat4 -= refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3t.transpose(), refMat4 += refMat2t.transpose() * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3t.transpose(), refMat4 -= refMat2t.transpose() * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 += m2 * m3t.transpose(), refMat4 += refMat2 * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 -= m2 * m3t.transpose(), refMat4 -= refMat2 * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1); | 
 |  | 
 |     // test aliasing | 
 |     m4 = m2; | 
 |     refMat4 = refMat2; | 
 |     VERIFY_IS_APPROX(m4 = m4 * m3, refMat4 = refMat4 * refMat3); | 
 |  | 
 |     // sparse * dense matrix | 
 |     VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = m2 * refMat3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3, refMat4 = refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3t.transpose(), | 
 |                      refMat4 = refMat2t.transpose() * refMat3t.transpose()); | 
 |  | 
 |     VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = dm4 + m2 * refMat3, refMat4 = refMat4 + refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 += m2 * refMat3, refMat4 += refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 -= m2 * refMat3, refMat4 -= refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4.noalias() += m2 * refMat3, refMat4 += refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4.noalias() -= m2 * refMat3, refMat4 -= refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = m2 * (refMat3 + refMat3), refMat4 = refMat2 * (refMat3 + refMat3)); | 
 |     VERIFY_IS_APPROX(dm4 = m2t.transpose() * (refMat3 + refMat5) * 0.5, | 
 |                      refMat4 = refMat2t.transpose() * (refMat3 + refMat5) * 0.5); | 
 |  | 
 |     // sparse * dense vector | 
 |     VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3.col(0), refMat4.col(0) = refMat2 * refMat3.col(0)); | 
 |     VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3t.transpose().col(0), | 
 |                      refMat4.col(0) = refMat2 * refMat3t.transpose().col(0)); | 
 |     VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3.col(0), | 
 |                      refMat4.col(0) = refMat2t.transpose() * refMat3.col(0)); | 
 |     VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3t.transpose().col(0), | 
 |                      refMat4.col(0) = refMat2t.transpose() * refMat3t.transpose().col(0)); | 
 |  | 
 |     // dense * sparse | 
 |     VERIFY_IS_APPROX(dm4 = refMat2 * m3, refMat4 = refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = dm4 + refMat2 * m3, refMat4 = refMat4 + refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 += refMat2 * m3, refMat4 += refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 -= refMat2 * m3, refMat4 -= refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4.noalias() += refMat2 * m3, refMat4 += refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4.noalias() -= refMat2 * m3, refMat4 -= refMat2 * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = refMat2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); | 
 |     VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); | 
 |     VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3t.transpose(), | 
 |                      refMat4 = refMat2t.transpose() * refMat3t.transpose()); | 
 |  | 
 |     // sparse * dense and dense * sparse outer product | 
 |     { | 
 |       Index c = internal::random<Index>(0, depth - 1); | 
 |       Index r = internal::random<Index>(0, rows - 1); | 
 |       Index c1 = internal::random<Index>(0, cols - 1); | 
 |       Index r1 = internal::random<Index>(0, depth - 1); | 
 |       DenseMatrix dm5 = DenseMatrix::Random(depth, cols); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(m4 = m2.middleCols(c, 1) * dm5.col(c1).transpose(), | 
 |                        refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleCols(c, 1).transpose(), | 
 |                        refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.col(c).transpose(), | 
 |                        refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.col(c).transpose(), | 
 |                        refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose()); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = m2.row(r).transpose() * dm5.col(c1).transpose(), | 
 |                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(m4 = m2.middleRows(r, 1).transpose() * dm5.col(c1).transpose(), | 
 |                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = m2.row(r).transpose() * dm5.col(c1).transpose(), | 
 |                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r)); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleRows(r, 1), refMat4 = dm5.col(c1) * refMat2.row(r)); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r)); | 
 |  | 
 |       VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r)); | 
 |       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); | 
 |       VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r)); | 
 |     } | 
 |  | 
 |     VERIFY_IS_APPROX(m6 = m6 * m6, refMat6 = refMat6 * refMat6); | 
 |  | 
 |     // sparse matrix * sparse vector | 
 |     ColSpVector cv0(cols), cv1; | 
 |     DenseVector dcv0(cols), dcv1; | 
 |     initSparse(2 * density, dcv0, cv0); | 
 |  | 
 |     RowSpVector rv0(depth), rv1; | 
 |     RowDenseVector drv0(depth), drv1(rv1); | 
 |     initSparse(2 * density, drv0, rv0); | 
 |  | 
 |     VERIFY_IS_APPROX(cv1 = m3 * cv0, dcv1 = refMat3 * dcv0); | 
 |     VERIFY_IS_APPROX(rv1 = rv0 * m3, drv1 = drv0 * refMat3); | 
 |     VERIFY_IS_APPROX(cv1 = m3t.adjoint() * cv0, dcv1 = refMat3t.adjoint() * dcv0); | 
 |     VERIFY_IS_APPROX(cv1 = rv0 * m3, dcv1 = drv0 * refMat3); | 
 |     VERIFY_IS_APPROX(rv1 = m3 * cv0, drv1 = refMat3 * dcv0); | 
 |   } | 
 |  | 
 |   // test matrix - diagonal product | 
 |   { | 
 |     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); | 
 |     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); | 
 |     DenseMatrix d3 = DenseMatrix::Zero(rows, cols); | 
 |     DiagonalMatrix<Scalar, Dynamic> d1(DenseVector::Random(cols)); | 
 |     DiagonalMatrix<Scalar, Dynamic> d2(DenseVector::Random(rows)); | 
 |     SparseMatrixType m2(rows, cols); | 
 |     SparseMatrixType m3(rows, cols); | 
 |     initSparse<Scalar>(density, refM2, m2); | 
 |     initSparse<Scalar>(density, refM3, m3); | 
 |     VERIFY_IS_APPROX(m3 = m2 * d1, refM3 = refM2 * d1); | 
 |     VERIFY_IS_APPROX(m3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2); | 
 |     VERIFY_IS_APPROX(m3 = d2 * m2, refM3 = d2 * refM2); | 
 |     VERIFY_IS_APPROX(m3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose()); | 
 |  | 
 |     // also check with a SparseWrapper: | 
 |     DenseVector v1 = DenseVector::Random(cols); | 
 |     DenseVector v2 = DenseVector::Random(rows); | 
 |     DenseVector v3 = DenseVector::Random(rows); | 
 |     VERIFY_IS_APPROX(m3 = m2 * v1.asDiagonal(), refM3 = refM2 * v1.asDiagonal()); | 
 |     VERIFY_IS_APPROX(m3 = m2.transpose() * v2.asDiagonal(), refM3 = refM2.transpose() * v2.asDiagonal()); | 
 |     VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2, refM3 = v2.asDiagonal() * refM2); | 
 |     VERIFY_IS_APPROX(m3 = v1.asDiagonal() * m2.transpose(), refM3 = v1.asDiagonal() * refM2.transpose()); | 
 |  | 
 |     VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2 * v1.asDiagonal(), refM3 = v2.asDiagonal() * refM2 * v1.asDiagonal()); | 
 |  | 
 |     VERIFY_IS_APPROX(v2 = m2 * v1.asDiagonal() * v1, refM2 * v1.asDiagonal() * v1); | 
 |     VERIFY_IS_APPROX(v3 = v2.asDiagonal() * m2 * v1, v2.asDiagonal() * refM2 * v1); | 
 |  | 
 |     // evaluate to a dense matrix to check the .row() and .col() iterator functions | 
 |     VERIFY_IS_APPROX(d3 = m2 * d1, refM3 = refM2 * d1); | 
 |     VERIFY_IS_APPROX(d3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2); | 
 |     VERIFY_IS_APPROX(d3 = d2 * m2, refM3 = d2 * refM2); | 
 |     VERIFY_IS_APPROX(d3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose()); | 
 |   } | 
 |  | 
 |   // test self-adjoint and triangular-view products | 
 |   { | 
 |     DenseMatrix b = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix x = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix refX = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix refUp = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refLo = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refS = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refA = DenseMatrix::Zero(rows, rows); | 
 |     SparseMatrixType mUp(rows, rows); | 
 |     SparseMatrixType mLo(rows, rows); | 
 |     SparseMatrixType mS(rows, rows); | 
 |     SparseMatrixType mA(rows, rows); | 
 |     initSparse<Scalar>(density, refA, mA); | 
 |     do { | 
 |       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag | /*ForceNonZeroDiag|*/ MakeUpperTriangular); | 
 |     } while (refUp.isZero()); | 
 |     refLo = refUp.adjoint(); | 
 |     mLo = mUp.adjoint(); | 
 |     refS = refUp + refLo; | 
 |     refS.diagonal() *= 0.5; | 
 |     mS = mUp + mLo; | 
 |     // TODO be able to address the diagonal.... | 
 |     for (int k = 0; k < mS.outerSize(); ++k) | 
 |       for (typename SparseMatrixType::InnerIterator it(mS, k); it; ++it) | 
 |         if (it.index() == k) it.valueRef() *= Scalar(0.5); | 
 |  | 
 |     VERIFY_IS_APPROX(refS.adjoint(), refS); | 
 |     VERIFY_IS_APPROX(mS.adjoint(), mS); | 
 |     VERIFY_IS_APPROX(mS, refS); | 
 |     VERIFY_IS_APPROX(x = mS * b, refX = refS * b); | 
 |  | 
 |     // sparse selfadjointView with dense matrices | 
 |     VERIFY_IS_APPROX(x = mUp.template selfadjointView<Upper>() * b, refX = refS * b); | 
 |     VERIFY_IS_APPROX(x = mLo.template selfadjointView<Lower>() * b, refX = refS * b); | 
 |     VERIFY_IS_APPROX(x = mS.template selfadjointView<Upper | Lower>() * b, refX = refS * b); | 
 |  | 
 |     VERIFY_IS_APPROX(x = b * mUp.template selfadjointView<Upper>(), refX = b * refS); | 
 |     VERIFY_IS_APPROX(x = b * mLo.template selfadjointView<Lower>(), refX = b * refS); | 
 |     VERIFY_IS_APPROX(x = b * mS.template selfadjointView<Upper | Lower>(), refX = b * refS); | 
 |  | 
 |     VERIFY_IS_APPROX(x.noalias() += mUp.template selfadjointView<Upper>() * b, refX += refS * b); | 
 |     VERIFY_IS_APPROX(x.noalias() -= mLo.template selfadjointView<Lower>() * b, refX -= refS * b); | 
 |     VERIFY_IS_APPROX(x.noalias() += mS.template selfadjointView<Upper | Lower>() * b, refX += refS * b); | 
 |  | 
 |     // sparse selfadjointView with sparse matrices | 
 |     SparseMatrixType mSres(rows, rows); | 
 |     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>() * mS, | 
 |                      refX = refLo.template selfadjointView<Lower>() * refS); | 
 |     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), | 
 |                      refX = refS * refLo.template selfadjointView<Lower>()); | 
 |  | 
 |     // sparse triangularView with dense matrices | 
 |     VERIFY_IS_APPROX(x = mA.template triangularView<Upper>() * b, refX = refA.template triangularView<Upper>() * b); | 
 |     VERIFY_IS_APPROX(x = mA.template triangularView<Lower>() * b, refX = refA.template triangularView<Lower>() * b); | 
 |     VERIFY_IS_APPROX(x = b * mA.template triangularView<Upper>(), refX = b * refA.template triangularView<Upper>()); | 
 |     VERIFY_IS_APPROX(x = b * mA.template triangularView<Lower>(), refX = b * refA.template triangularView<Lower>()); | 
 |  | 
 |     // sparse triangularView with sparse matrices | 
 |     VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>() * mS, | 
 |                      refX = refA.template triangularView<Lower>() * refS); | 
 |     VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), | 
 |                      refX = refS * refA.template triangularView<Lower>()); | 
 |     VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>() * mS, | 
 |                      refX = refA.template triangularView<Upper>() * refS); | 
 |     VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), | 
 |                      refX = refS * refA.template triangularView<Upper>()); | 
 |   } | 
 | } | 
 |  | 
 | // New test for Bug in SparseTimeDenseProduct | 
 | template <typename SparseMatrixType, typename DenseMatrixType> | 
 | void sparse_product_regression_test() { | 
 |   // This code does not compile with afflicted versions of the bug | 
 |   SparseMatrixType sm1(3, 2); | 
 |   DenseMatrixType m2(2, 2); | 
 |   sm1.setZero(); | 
 |   m2.setZero(); | 
 |  | 
 |   DenseMatrixType m3 = sm1 * m2; | 
 |  | 
 |   // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct | 
 |   // bug | 
 |  | 
 |   SparseMatrixType sm2(20000, 2); | 
 |   sm2.setZero(); | 
 |   DenseMatrixType m4(sm2 * m2); | 
 |  | 
 |   VERIFY_IS_APPROX(m4(0, 0), 0.0); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void bug_942() { | 
 |   typedef Matrix<Scalar, Dynamic, 1> Vector; | 
 |   typedef SparseMatrix<Scalar, ColMajor> ColSpMat; | 
 |   typedef SparseMatrix<Scalar, RowMajor> RowSpMat; | 
 |   ColSpMat cmA(1, 1); | 
 |   cmA.insert(0, 0) = 1; | 
 |  | 
 |   RowSpMat rmA(1, 1); | 
 |   rmA.insert(0, 0) = 1; | 
 |  | 
 |   Vector d(1); | 
 |   d[0] = 2; | 
 |  | 
 |   double res = 2; | 
 |  | 
 |   VERIFY_IS_APPROX((cmA * d.asDiagonal()).eval().coeff(0, 0), res); | 
 |   VERIFY_IS_APPROX((d.asDiagonal() * rmA).eval().coeff(0, 0), res); | 
 |   VERIFY_IS_APPROX((rmA * d.asDiagonal()).eval().coeff(0, 0), res); | 
 |   VERIFY_IS_APPROX((d.asDiagonal() * cmA).eval().coeff(0, 0), res); | 
 | } | 
 |  | 
 | template <typename Real> | 
 | void test_mixing_types() { | 
 |   typedef std::complex<Real> Cplx; | 
 |   typedef SparseMatrix<Real> SpMatReal; | 
 |   typedef SparseMatrix<Cplx> SpMatCplx; | 
 |   typedef SparseMatrix<Cplx, RowMajor> SpRowMatCplx; | 
 |   typedef Matrix<Real, Dynamic, Dynamic> DenseMatReal; | 
 |   typedef Matrix<Cplx, Dynamic, Dynamic> DenseMatCplx; | 
 |  | 
 |   Index n = internal::random<Index>(1, 100); | 
 |   double density = (std::max)(8. / static_cast<double>(n * n), 0.2); | 
 |  | 
 |   SpMatReal sR1(n, n); | 
 |   SpMatCplx sC1(n, n), sC2(n, n), sC3(n, n); | 
 |   SpRowMatCplx sCR(n, n); | 
 |   DenseMatReal dR1(n, n); | 
 |   DenseMatCplx dC1(n, n), dC2(n, n), dC3(n, n); | 
 |  | 
 |   initSparse<Real>(density, dR1, sR1); | 
 |   initSparse<Cplx>(density, dC1, sC1); | 
 |   initSparse<Cplx>(density, dC2, sC2); | 
 |  | 
 |   VERIFY_IS_APPROX(sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()), | 
 |                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()), | 
 |                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); | 
 |  | 
 |   VERIFY_IS_APPROX(sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); | 
 |   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()), | 
 |                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()), | 
 |                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); | 
 |  | 
 |   VERIFY_IS_APPROX(sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()).pruned(), | 
 |                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()).pruned(), | 
 |                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); | 
 |  | 
 |   VERIFY_IS_APPROX(sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1); | 
 |   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()).pruned(), | 
 |                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()).pruned(), | 
 |                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); | 
 |  | 
 |   VERIFY_IS_APPROX(dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); | 
 |   VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); | 
 |   VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1.transpose()), | 
 |                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); | 
 |   VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1.transpose()), | 
 |                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); | 
 |  | 
 |   VERIFY_IS_APPROX(dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1); | 
 |   VERIFY_IS_APPROX(dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1); | 
 |   VERIFY_IS_APPROX(dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>()); | 
 |  | 
 |   VERIFY_IS_APPROX(dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1); | 
 |   VERIFY_IS_APPROX(dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0)); | 
 |   VERIFY_IS_APPROX(dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>()); | 
 |   VERIFY_IS_APPROX(dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0)); | 
 | } | 
 |  | 
 | // Test mixed storage types | 
 | template <int OrderA, int OrderB, int OrderC> | 
 | void test_mixed_storage_imp() { | 
 |   typedef float Real; | 
 |   typedef Matrix<Real, Dynamic, Dynamic> DenseMat; | 
 |  | 
 |   // Case: Large inputs but small result | 
 |   { | 
 |     SparseMatrix<Real, OrderA> A(8, 512); | 
 |     SparseMatrix<Real, OrderB> B(512, 8); | 
 |     DenseMat refA(8, 512); | 
 |     DenseMat refB(512, 8); | 
 |  | 
 |     initSparse<Real>(0.1, refA, A); | 
 |     initSparse<Real>(0.1, refB, B); | 
 |  | 
 |     SparseMatrix<Real, OrderC, std::int8_t> result; | 
 |     SparseMatrix<Real, OrderC> result_large; | 
 |     DenseMat refResult; | 
 |  | 
 |     VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB); | 
 |   } | 
 |  | 
 |   // Case: Small input but large result | 
 |   { | 
 |     SparseMatrix<Real, OrderA, std::int8_t> A(127, 8); | 
 |     SparseMatrix<Real, OrderB, std::int8_t> B(8, 127); | 
 |     DenseMat refA(127, 8); | 
 |     DenseMat refB(8, 127); | 
 |  | 
 |     initSparse<Real>(0.01, refA, A); | 
 |     initSparse<Real>(0.01, refB, B); | 
 |  | 
 |     SparseMatrix<Real, OrderC> result; | 
 |     SparseMatrix<Real, OrderC> result_large; | 
 |     DenseMat refResult; | 
 |  | 
 |     VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB); | 
 |   } | 
 | } | 
 |  | 
 | void test_mixed_storage() { | 
 |   test_mixed_storage_imp<RowMajor, RowMajor, RowMajor>(); | 
 |   test_mixed_storage_imp<RowMajor, RowMajor, ColMajor>(); | 
 |   test_mixed_storage_imp<RowMajor, ColMajor, RowMajor>(); | 
 |   test_mixed_storage_imp<RowMajor, ColMajor, ColMajor>(); | 
 |   test_mixed_storage_imp<ColMajor, RowMajor, RowMajor>(); | 
 |   test_mixed_storage_imp<ColMajor, RowMajor, ColMajor>(); | 
 |   test_mixed_storage_imp<ColMajor, ColMajor, RowMajor>(); | 
 |   test_mixed_storage_imp<ColMajor, ColMajor, ColMajor>(); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(sparse_product) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1((sparse_product<SparseMatrix<double, ColMajor> >())); | 
 |     CALL_SUBTEST_1((sparse_product<SparseMatrix<double, RowMajor> >())); | 
 |     CALL_SUBTEST_1((bug_942<double>())); | 
 |     CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, ColMajor> >())); | 
 |     CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, RowMajor> >())); | 
 |     CALL_SUBTEST_3((sparse_product<SparseMatrix<float, ColMajor, long int> >())); | 
 |     CALL_SUBTEST_4(( | 
 |         sparse_product_regression_test<SparseMatrix<double, RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >())); | 
 |  | 
 |     CALL_SUBTEST_5((test_mixing_types<float>())); | 
 |     CALL_SUBTEST_5((test_mixed_storage())); | 
 |   } | 
 | } |