| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template <typename T> | 
 | EIGEN_DONT_INLINE T copy(const T& x) { | 
 |   return x; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void stable_norm(const MatrixType& m) { | 
 |   /* this test covers the following files: | 
 |      StableNorm.h | 
 |   */ | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   bool complex_real_product_ok = true; | 
 |  | 
 |   // Check the basic machine-dependent constants. | 
 |   { | 
 |     int ibeta, it, iemin, iemax; | 
 |  | 
 |     ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers | 
 |     it = std::numeric_limits<RealScalar>::digits;           // number of base-beta digits in mantissa | 
 |     iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent | 
 |     iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent | 
 |  | 
 |     VERIFY((!(iemin > 1 - 2 * it || 1 + it > iemax || (it == 2 && ibeta < 5) || (it <= 4 && ibeta <= 3) || it < 2)) && | 
 |            "the stable norm algorithm cannot be guaranteed on this computer"); | 
 |  | 
 |     Scalar inf = std::numeric_limits<RealScalar>::infinity(); | 
 |     if (NumTraits<Scalar>::IsComplex && (numext::isnan)(inf * RealScalar(1))) { | 
 |       complex_real_product_ok = false; | 
 |       static bool first = true; | 
 |       if (first) | 
 |         std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " | 
 |                   << inf * RealScalar(1) << std::endl; | 
 |       first = false; | 
 |     } | 
 |   } | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   // get a non-zero random factor | 
 |   Scalar factor = internal::random<Scalar>(); | 
 |   while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
 |   Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
 |  | 
 |   factor = internal::random<Scalar>(); | 
 |   while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
 |   Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | 
 |  | 
 |   Scalar one(1); | 
 |  | 
 |   MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), | 
 |              vsmall(rows, cols); | 
 |  | 
 |   vbig.fill(big); | 
 |   vsmall.fill(small); | 
 |  | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); | 
 |   VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); | 
 |  | 
 |   // test with expressions as input | 
 |   VERIFY_IS_APPROX((one * vrand).stableNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX((one * vrand).blueNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX((one * vrand).hypotNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).stableNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).blueNorm(), vrand.norm()); | 
 |   VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).hypotNorm(), vrand.norm()); | 
 |  | 
 |   RealScalar size = static_cast<RealScalar>(m.size()); | 
 |  | 
 |   // test numext::isfinite | 
 |   VERIFY(!(numext::isfinite)(std::numeric_limits<RealScalar>::infinity())); | 
 |   VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); | 
 |  | 
 |   // test overflow | 
 |   VERIFY((numext::isfinite)(sqrt(size) * abs(big))); | 
 |   VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size) * big));  // here the default norm must fail | 
 |   VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size) * abs(big)); | 
 |   VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size) * abs(big)); | 
 |   VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size) * abs(big)); | 
 |  | 
 |   // test underflow | 
 |   VERIFY((numext::isfinite)(sqrt(size) * abs(small))); | 
 |   VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size) * small));  // here the default norm must fail | 
 |   VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size) * abs(small)); | 
 |   VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size) * abs(small)); | 
 |   VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size) * abs(small)); | 
 |  | 
 |   // Test compilation of cwise() version | 
 |   VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); | 
 |   VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); | 
 |   VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); | 
 |   VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); | 
 |   VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); | 
 |   VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); | 
 |  | 
 |   // test NaN, +inf, -inf | 
 |   MatrixType v; | 
 |   Index i = internal::random<Index>(0, rows - 1); | 
 |   Index j = internal::random<Index>(0, cols - 1); | 
 |  | 
 |   // NaN | 
 |   { | 
 |     v = vrand; | 
 |     v(i, j) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
 |     VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
 |     VERIFY((numext::isnan)(v.squaredNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.norm())); | 
 |     VERIFY((numext::isnan)(v.norm())); | 
 |     VERIFY(!(numext::isfinite)(v.stableNorm())); | 
 |     VERIFY((numext::isnan)(v.stableNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.blueNorm())); | 
 |     VERIFY((numext::isnan)(v.blueNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
 |     VERIFY((numext::isnan)(v.hypotNorm())); | 
 |   } | 
 |  | 
 |   // +inf | 
 |   { | 
 |     v = vrand; | 
 |     v(i, j) = std::numeric_limits<RealScalar>::infinity(); | 
 |     VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
 |     VERIFY(isPlusInf(v.squaredNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.norm())); | 
 |     VERIFY(isPlusInf(v.norm())); | 
 |     VERIFY(!(numext::isfinite)(v.stableNorm())); | 
 |     if (complex_real_product_ok) { | 
 |       VERIFY(isPlusInf(v.stableNorm())); | 
 |     } | 
 |     VERIFY(!(numext::isfinite)(v.blueNorm())); | 
 |     VERIFY(isPlusInf(v.blueNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
 |     VERIFY(isPlusInf(v.hypotNorm())); | 
 |   } | 
 |  | 
 |   // -inf | 
 |   { | 
 |     v = vrand; | 
 |     v(i, j) = -std::numeric_limits<RealScalar>::infinity(); | 
 |     VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
 |     VERIFY(isPlusInf(v.squaredNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.norm())); | 
 |     VERIFY(isPlusInf(v.norm())); | 
 |     VERIFY(!(numext::isfinite)(v.stableNorm())); | 
 |     if (complex_real_product_ok) { | 
 |       VERIFY(isPlusInf(v.stableNorm())); | 
 |     } | 
 |     VERIFY(!(numext::isfinite)(v.blueNorm())); | 
 |     VERIFY(isPlusInf(v.blueNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
 |     VERIFY(isPlusInf(v.hypotNorm())); | 
 |   } | 
 |  | 
 |   // mix | 
 |   { | 
 |     Index i2 = internal::random<Index>(0, rows - 1); | 
 |     Index j2 = internal::random<Index>(0, cols - 1); | 
 |     v = vrand; | 
 |     v(i, j) = -std::numeric_limits<RealScalar>::infinity(); | 
 |     v(i2, j2) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
 |     VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
 |     VERIFY((numext::isnan)(v.squaredNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.norm())); | 
 |     VERIFY((numext::isnan)(v.norm())); | 
 |     VERIFY(!(numext::isfinite)(v.stableNorm())); | 
 |     VERIFY((numext::isnan)(v.stableNorm())); | 
 |     VERIFY(!(numext::isfinite)(v.blueNorm())); | 
 |     VERIFY((numext::isnan)(v.blueNorm())); | 
 |     if (i2 != i || j2 != j) { | 
 |       // hypot propagates inf over NaN. | 
 |       VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
 |       VERIFY((numext::isinf)(v.hypotNorm())); | 
 |     } else { | 
 |       // inf is overwritten by NaN, expect norm to be NaN. | 
 |       VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
 |       VERIFY((numext::isnan)(v.hypotNorm())); | 
 |     } | 
 |   } | 
 |  | 
 |   // stableNormalize[d] | 
 |   { | 
 |     VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized()); | 
 |     MatrixType vcopy(vrand); | 
 |     vcopy.stableNormalize(); | 
 |     VERIFY_IS_APPROX(vcopy, vrand.normalized()); | 
 |     VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1)); | 
 |     VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1)); | 
 |     VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1)); | 
 |     VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1)); | 
 |     RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
 |     VERIFY_IS_APPROX(vbig / big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval() / big_scaling); | 
 |     VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized()); | 
 |   } | 
 | } | 
 |  | 
 | void test_empty() { | 
 |   Eigen::VectorXf empty(0); | 
 |   VERIFY_IS_EQUAL(empty.stableNorm(), 0.0f); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void test_hypot() { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   Scalar factor = internal::random<Scalar>(); | 
 |   while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
 |   Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
 |  | 
 |   factor = internal::random<Scalar>(); | 
 |   while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
 |   Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | 
 |  | 
 |   Scalar one(1), zero(0), sqrt2(std::sqrt(2)), nan(std::numeric_limits<RealScalar>::quiet_NaN()); | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-1, 1); | 
 |   Scalar b = internal::random<Scalar>(-1, 1); | 
 |   VERIFY_IS_APPROX(numext::hypot(a, b), std::sqrt(numext::abs2(a) + numext::abs2(b))); | 
 |   VERIFY_IS_EQUAL(numext::hypot(zero, zero), zero); | 
 |   VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2); | 
 |   VERIFY_IS_APPROX(numext::hypot(big, big), sqrt2 * numext::abs(big)); | 
 |   VERIFY_IS_APPROX(numext::hypot(small, small), sqrt2 * numext::abs(small)); | 
 |   VERIFY_IS_APPROX(numext::hypot(small, big), numext::abs(big)); | 
 |   VERIFY((numext::isnan)(numext::hypot(nan, a))); | 
 |   VERIFY((numext::isnan)(numext::hypot(a, nan))); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(stable_norm) { | 
 |   CALL_SUBTEST_1(test_empty()); | 
 |  | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_3(test_hypot<double>()); | 
 |     CALL_SUBTEST_4(test_hypot<float>()); | 
 |     CALL_SUBTEST_5(test_hypot<std::complex<double> >()); | 
 |     CALL_SUBTEST_6(test_hypot<std::complex<float> >()); | 
 |  | 
 |     CALL_SUBTEST_1(stable_norm(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(stable_norm(Vector4d())); | 
 |     CALL_SUBTEST_3(stable_norm(VectorXd(internal::random<int>(10, 2000)))); | 
 |     CALL_SUBTEST_3(stable_norm(MatrixXd(internal::random<int>(10, 200), internal::random<int>(10, 200)))); | 
 |     CALL_SUBTEST_4(stable_norm(VectorXf(internal::random<int>(10, 2000)))); | 
 |     CALL_SUBTEST_5(stable_norm(VectorXcd(internal::random<int>(10, 2000)))); | 
 |     CALL_SUBTEST_6(stable_norm(VectorXcf(internal::random<int>(10, 2000)))); | 
 |   } | 
 | } |