|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef KDBVH_H_INCLUDED | 
|  | #define KDBVH_H_INCLUDED | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // internal pair class for the BVH--used instead of std::pair because of alignment | 
|  | template <typename Scalar, int Dim> | 
|  | struct vector_int_pair { | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim) | 
|  | typedef Matrix<Scalar, Dim, 1> VectorType; | 
|  |  | 
|  | vector_int_pair(const VectorType &v, int i) : first(v), second(i) {} | 
|  |  | 
|  | VectorType first; | 
|  | int second; | 
|  | }; | 
|  |  | 
|  | // these templates help the tree initializer get the bounding boxes either from a provided | 
|  | // iterator range or using bounding_box in a unified way | 
|  | template <typename ObjectList, typename VolumeList, typename BoxIter> | 
|  | struct get_boxes_helper { | 
|  | void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes) { | 
|  | outBoxes.insert(outBoxes.end(), boxBegin, boxEnd); | 
|  | eigen_assert(outBoxes.size() == objects.size()); | 
|  | EIGEN_ONLY_USED_FOR_DEBUG(objects); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename ObjectList, typename VolumeList> | 
|  | struct get_boxes_helper<ObjectList, VolumeList, int> { | 
|  | void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes) { | 
|  | outBoxes.reserve(objects.size()); | 
|  | for (int i = 0; i < (int)objects.size(); ++i) outBoxes.push_back(bounding_box(objects[i])); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \class KdBVH | 
|  | *  \brief A simple bounding volume hierarchy based on AlignedBox | 
|  | * | 
|  | *  \param Scalar_ The underlying scalar type of the bounding boxes | 
|  | *  \param Dim_ The dimension of the space in which the hierarchy lives | 
|  | *  \param Object_ The object type that lives in the hierarchy.  It must have value semantics.  Either | 
|  | *                 `bounding_box(Object_)` must be defined and return an `AlignedBox<Scalar_, Dim_>` or bounding boxes | 
|  | *                  must be provided to the tree initializer. | 
|  | * | 
|  | * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a | 
|  | * Kd-tree. Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers and | 
|  | * builds a BVH with the structure of that Kd-tree.  When the elements of the tree are too expensive to be copied | 
|  | * around, it is useful for `Object_` to be a pointer. | 
|  | */ | 
|  | template <typename Scalar_, int Dim_, typename Object_> | 
|  | class KdBVH { | 
|  | public: | 
|  | enum { Dim = Dim_ }; | 
|  | typedef Object_ Object; | 
|  | typedef std::vector<Object, aligned_allocator<Object> > ObjectList; | 
|  | typedef Scalar_ Scalar; | 
|  | typedef AlignedBox<Scalar, Dim> Volume; | 
|  | typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList; | 
|  | typedef int Index; | 
|  | typedef const int *VolumeIterator;  // the iterators are just pointers into the tree's vectors | 
|  | typedef const Object *ObjectIterator; | 
|  |  | 
|  | KdBVH() {} | 
|  |  | 
|  | /** Given an iterator range over \a Object references, constructs the BVH.  Requires that bounding_box(Object) return | 
|  | * a Volume. */ | 
|  | template <typename Iter> | 
|  | KdBVH(Iter begin, Iter end) { | 
|  | init(begin, end, 0, 0); | 
|  | }  // int is recognized by init as not being an iterator type | 
|  |  | 
|  | /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the | 
|  | * BVH */ | 
|  | template <typename OIter, typename BIter> | 
|  | KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { | 
|  | init(begin, end, boxBegin, boxEnd); | 
|  | } | 
|  |  | 
|  | /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently. | 
|  | * Requires that bounding_box(Object) return a Volume. */ | 
|  | template <typename Iter> | 
|  | void init(Iter begin, Iter end) { | 
|  | init(begin, end, 0, 0); | 
|  | } | 
|  |  | 
|  | /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, | 
|  | * constructs the BVH, overwriting whatever is in there currently. */ | 
|  | template <typename OIter, typename BIter> | 
|  | void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { | 
|  | objects.clear(); | 
|  | boxes.clear(); | 
|  | children.clear(); | 
|  |  | 
|  | objects.insert(objects.end(), begin, end); | 
|  | int n = static_cast<int>(objects.size()); | 
|  |  | 
|  | if (n < 2) return;  // if we have at most one object, we don't need any internal nodes | 
|  |  | 
|  | VolumeList objBoxes; | 
|  | VIPairList objCenters; | 
|  |  | 
|  | // compute the bounding boxes depending on BIter type | 
|  | internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes); | 
|  |  | 
|  | objCenters.reserve(n); | 
|  | boxes.reserve(n - 1); | 
|  | children.reserve(2 * n - 2); | 
|  |  | 
|  | for (int i = 0; i < n; ++i) objCenters.push_back(VIPair(objBoxes[i].center(), i)); | 
|  |  | 
|  | build(objCenters, 0, n, objBoxes, 0);  // the recursive part of the algorithm | 
|  |  | 
|  | ObjectList tmp(n); | 
|  | tmp.swap(objects); | 
|  | for (int i = 0; i < n; ++i) objects[i] = tmp[objCenters[i].second]; | 
|  | } | 
|  |  | 
|  | /** \returns the index of the root of the hierarchy */ | 
|  | inline Index getRootIndex() const { return (int)boxes.size() - 1; } | 
|  |  | 
|  | /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of | 
|  | * the node and \a outOBegin and \a outOEnd range over the object children of the node */ | 
|  | EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd, | 
|  | ObjectIterator &outOBegin, ObjectIterator &outOEnd) | 
|  | const {  // inlining this function should open lots of optimization opportunities to the compiler | 
|  | if (index < 0) { | 
|  | outVBegin = outVEnd; | 
|  | if (!objects.empty()) outOBegin = &(objects[0]); | 
|  | outOEnd = outOBegin + objects.size();  // output all objects--necessary when the tree has only one object | 
|  | return; | 
|  | } | 
|  |  | 
|  | int numBoxes = static_cast<int>(boxes.size()); | 
|  |  | 
|  | int idx = index * 2; | 
|  | if (children[idx + 1] < numBoxes) {  // second index is always bigger | 
|  | outVBegin = &(children[idx]); | 
|  | outVEnd = outVBegin + 2; | 
|  | outOBegin = outOEnd; | 
|  | } else if (children[idx] >= numBoxes) {  // if both children are objects | 
|  | outVBegin = outVEnd; | 
|  | outOBegin = &(objects[children[idx] - numBoxes]); | 
|  | outOEnd = outOBegin + 2; | 
|  | } else {  // if the first child is a volume and the second is an object | 
|  | outVBegin = &(children[idx]); | 
|  | outVEnd = outVBegin + 1; | 
|  | outOBegin = &(objects[children[idx + 1] - numBoxes]); | 
|  | outOEnd = outOBegin + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \returns the bounding box of the node at \a index */ | 
|  | inline const Volume &getVolume(Index index) const { return boxes[index]; } | 
|  |  | 
|  | private: | 
|  | typedef internal::vector_int_pair<Scalar, Dim> VIPair; | 
|  | typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList; | 
|  | typedef Matrix<Scalar, Dim, 1> VectorType; | 
|  | struct VectorComparator  // compares vectors, or more specifically, VIPairs along a particular dimension | 
|  | { | 
|  | VectorComparator(int inDim) : dim(inDim) {} | 
|  | inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; } | 
|  | int dim; | 
|  | }; | 
|  |  | 
|  | // Build the part of the tree between objects[from] and objects[to] (not including objects[to]). | 
|  | // This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs | 
|  | // the two halves, and adds their parent node.  TODO: a cache-friendlier layout | 
|  | void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim) { | 
|  | eigen_assert(to - from > 1); | 
|  | if (to - from == 2) { | 
|  | boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second])); | 
|  | children.push_back(from + (int)objects.size() - 1);  // there are objects.size() - 1 tree nodes | 
|  | children.push_back(from + (int)objects.size()); | 
|  | } else if (to - from == 3) { | 
|  | int mid = from + 2; | 
|  | std::nth_element(objCenters.begin() + from, objCenters.begin() + mid, objCenters.begin() + to, | 
|  | VectorComparator(dim));  // partition | 
|  | build(objCenters, from, mid, objBoxes, (dim + 1) % Dim); | 
|  | int idx1 = (int)boxes.size() - 1; | 
|  | boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second])); | 
|  | children.push_back(idx1); | 
|  | children.push_back(mid + (int)objects.size() - 1); | 
|  | } else { | 
|  | int mid = from + (to - from) / 2; | 
|  | nth_element(objCenters.begin() + from, objCenters.begin() + mid, objCenters.begin() + to, | 
|  | VectorComparator(dim));  // partition | 
|  | build(objCenters, from, mid, objBoxes, (dim + 1) % Dim); | 
|  | int idx1 = (int)boxes.size() - 1; | 
|  | build(objCenters, mid, to, objBoxes, (dim + 1) % Dim); | 
|  | int idx2 = (int)boxes.size() - 1; | 
|  | boxes.push_back(boxes[idx1].merged(boxes[idx2])); | 
|  | children.push_back(idx1); | 
|  | children.push_back(idx2); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<int> children;  // children of x are children[2x] and children[2x+1], indices bigger than boxes.size() | 
|  | // index into objects. | 
|  | VolumeList boxes; | 
|  | ObjectList objects; | 
|  | }; | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // KDBVH_H_INCLUDED |