|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_EULERSYSTEM_H | 
|  | #define EIGEN_EULERSYSTEM_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  | // Forward declarations | 
|  | template <typename Scalar_, class _System> | 
|  | class EulerAngles; | 
|  |  | 
|  | namespace internal { | 
|  | // TODO: Add this trait to the Eigen internal API? | 
|  | template <int Num, bool IsPositive = (Num > 0)> | 
|  | struct Abs { | 
|  | enum { value = Num }; | 
|  | }; | 
|  |  | 
|  | template <int Num> | 
|  | struct Abs<Num, false> { | 
|  | enum { value = -Num }; | 
|  | }; | 
|  |  | 
|  | template <int Axis> | 
|  | struct IsValidAxis { | 
|  | enum { value = Axis != 0 && Abs<Axis>::value <= 3 }; | 
|  | }; | 
|  |  | 
|  | template <typename System, typename Other, int OtherRows = Other::RowsAtCompileTime, | 
|  | int OtherCols = Other::ColsAtCompileTime> | 
|  | struct eulerangles_assign_impl; | 
|  | }  // namespace internal | 
|  |  | 
|  | #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND, MSG) typedef char static_assertion_##MSG[(COND) ? 1 : -1] | 
|  |  | 
|  | /** \brief Representation of a fixed signed rotation axis for EulerSystem. | 
|  | * | 
|  | * \ingroup EulerAngles_Module | 
|  | * | 
|  | * Values here represent: | 
|  | *  - The axis of the rotation: X, Y or Z. | 
|  | *  - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-) | 
|  | * | 
|  | * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z} | 
|  | * | 
|  | * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}. | 
|  | */ | 
|  | enum EulerAxis { | 
|  | EULER_X = 1, /*!< the X axis */ | 
|  | EULER_Y = 2, /*!< the Y axis */ | 
|  | EULER_Z = 3  /*!< the Z axis */ | 
|  | }; | 
|  |  | 
|  | /** \class EulerSystem | 
|  | * | 
|  | * \ingroup EulerAngles_Module | 
|  | * | 
|  | * \brief Represents a fixed Euler rotation system. | 
|  | * | 
|  | * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles. | 
|  | * | 
|  | * You can use this class to get two things: | 
|  | *  - Build an Euler system, and then pass it as a template parameter to EulerAngles. | 
|  | *  - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan) | 
|  | * | 
|  | * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles) | 
|  | * This meta-class store constantly those signed axes. (see \ref EulerAxis) | 
|  | * | 
|  | * ### Types of Euler systems ### | 
|  | * | 
|  | * All and only valid 3 dimension Euler rotation over standard | 
|  | *  signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported: | 
|  | *  - all axes X, Y, Z in each valid order (see below what order is valid) | 
|  | *  - rotation over the axis is supported both over the positive and negative directions. | 
|  | *  - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite). | 
|  | * | 
|  | * Since EulerSystem support both positive and negative directions, | 
|  | *  you may call this rotation distinction in other names: | 
|  | *  - _right handed_ or _left handed_ | 
|  | *  - _counterclockwise_ or _clockwise_ | 
|  | * | 
|  | * Notice all axed combination are valid, and would trigger a static assertion. | 
|  | * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. | 
|  | * This yield two and only two classes: | 
|  | *  - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} | 
|  | *  - _proper/classic Euler angles_ - The first and the third unsigned axes is equal, | 
|  | *     and the second is different, e.g. {X,Y,X} | 
|  | * | 
|  | * ### Intrinsic vs extrinsic Euler systems ### | 
|  | * | 
|  | * Only intrinsic Euler systems are supported for simplicity. | 
|  | *  If you want to use extrinsic Euler systems, | 
|  | *   just use the equal intrinsic opposite order for axes and angles. | 
|  | *  I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a). | 
|  | * | 
|  | * ### Convenient user typedefs ### | 
|  | * | 
|  | * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems), | 
|  | *  in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ. | 
|  | * | 
|  | * ### Additional reading ### | 
|  | * | 
|  | * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles | 
|  | * | 
|  | * \tparam _AlphaAxis the first fixed EulerAxis | 
|  | * | 
|  | * \tparam _BetaAxis the second fixed EulerAxis | 
|  | * | 
|  | * \tparam _GammaAxis the third fixed EulerAxis | 
|  | */ | 
|  | template <int _AlphaAxis, int _BetaAxis, int _GammaAxis> | 
|  | class EulerSystem { | 
|  | public: | 
|  | // It's defined this way and not as enum, because I think | 
|  | //  that enum is not guerantee to support negative numbers | 
|  |  | 
|  | /** The first rotation axis */ | 
|  | static constexpr int AlphaAxis = _AlphaAxis; | 
|  |  | 
|  | /** The second rotation axis */ | 
|  | static constexpr int BetaAxis = _BetaAxis; | 
|  |  | 
|  | /** The third rotation axis */ | 
|  | static constexpr int GammaAxis = _GammaAxis; | 
|  |  | 
|  | enum { | 
|  | AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */ | 
|  | BetaAxisAbs = internal::Abs<BetaAxis>::value,   /*!< the second rotation axis unsigned */ | 
|  | GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */ | 
|  |  | 
|  | IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */ | 
|  | IsBetaOpposite = (BetaAxis < 0) ? 1 : 0,   /*!< whether beta axis is negative */ | 
|  | IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */ | 
|  |  | 
|  | // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed | 
|  | // by Z, or Z is followed by X; otherwise it is odd. | 
|  | IsOdd = ((AlphaAxisAbs) % 3 == (BetaAxisAbs - 1) % 3) ? 0 : 1, /*!< whether the Euler system is odd */ | 
|  | IsEven = IsOdd ? 0 : 1,                                        /*!< whether the Euler system is even */ | 
|  |  | 
|  | IsTaitBryan = | 
|  | ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */ | 
|  | }; | 
|  |  | 
|  | private: | 
|  | EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value, ALPHA_AXIS_IS_INVALID); | 
|  |  | 
|  | EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value, BETA_AXIS_IS_INVALID); | 
|  |  | 
|  | EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value, GAMMA_AXIS_IS_INVALID); | 
|  |  | 
|  | EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs, | 
|  | ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS); | 
|  |  | 
|  | EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs, | 
|  | BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS); | 
|  |  | 
|  | static const int | 
|  | // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system. | 
|  | // They are used in this class converters. | 
|  | // They are always different from each other, and their possible values are: 0, 1, or 2. | 
|  | I_ = AlphaAxisAbs - 1, | 
|  | J_ = (AlphaAxisAbs - 1 + 1 + IsOdd) % 3, K_ = (AlphaAxisAbs - 1 + 2 - IsOdd) % 3; | 
|  |  | 
|  | // TODO: Get @mat parameter in form that avoids double evaluation. | 
|  | template <typename Derived> | 
|  | static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, | 
|  | const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/) { | 
|  | using std::atan2; | 
|  | using std::sqrt; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  |  | 
|  | const Scalar plusMinus = IsEven ? 1 : -1; | 
|  | const Scalar minusPlus = IsOdd ? 1 : -1; | 
|  |  | 
|  | const Scalar Rsum = sqrt((mat(I_, I_) * mat(I_, I_) + mat(I_, J_) * mat(I_, J_) + mat(J_, K_) * mat(J_, K_) + | 
|  | mat(K_, K_) * mat(K_, K_)) / | 
|  | 2); | 
|  | res[1] = atan2(plusMinus * mat(I_, K_), Rsum); | 
|  |  | 
|  | // There is a singularity when cos(beta) == 0 | 
|  | if (Rsum > 4 * NumTraits<Scalar>::epsilon()) {  // cos(beta) != 0 | 
|  | res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_)); | 
|  | res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_)); | 
|  | } else if (plusMinus * mat(I_, K_) > 0) {               // cos(beta) == 0 and sin(beta) == 1 | 
|  | Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_);  // 2*sin(alpha + plusMinus * gamma | 
|  | Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_);  // 2*cos(alpha + plusMinus * gamma) | 
|  | Scalar alphaPlusMinusGamma = atan2(spos, cpos); | 
|  | res[0] = alphaPlusMinusGamma; | 
|  | res[2] = 0; | 
|  | } else {                                                              // cos(beta) == 0 and sin(beta) == -1 | 
|  | Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_));  // 2*sin(alpha + minusPlus*gamma) | 
|  | Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_);                // 2*cos(alpha + minusPlus*gamma) | 
|  | Scalar alphaMinusPlusBeta = atan2(sneg, cneg); | 
|  | res[0] = alphaMinusPlusBeta; | 
|  | res[2] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Derived> | 
|  | static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, | 
|  | const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) { | 
|  | using std::atan2; | 
|  | using std::sqrt; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  |  | 
|  | const Scalar plusMinus = IsEven ? 1 : -1; | 
|  | const Scalar minusPlus = IsOdd ? 1 : -1; | 
|  |  | 
|  | const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + | 
|  | mat(K_, I_) * mat(K_, I_)) / | 
|  | 2); | 
|  |  | 
|  | res[1] = atan2(Rsum, mat(I_, I_)); | 
|  |  | 
|  | // There is a singularity when sin(beta) == 0 | 
|  | if (Rsum > 4 * NumTraits<Scalar>::epsilon()) {  // sin(beta) != 0 | 
|  | res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_)); | 
|  | res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_)); | 
|  | } else if (mat(I_, I_) > 0) {                                       // sin(beta) == 0 and cos(beta) == 1 | 
|  | Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_);  // 2*sin(alpha + gamma) | 
|  | Scalar cpos = mat(J_, J_) + mat(K_, K_);                          // 2*cos(alpha + gamma) | 
|  | res[0] = atan2(spos, cpos); | 
|  | res[2] = 0; | 
|  | } else {                                                            // sin(beta) == 0 and cos(beta) == -1 | 
|  | Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_);  // 2*sin(alpha - gamma) | 
|  | Scalar cneg = mat(J_, J_) - mat(K_, K_);                          // 2*cos(alpha - gamma) | 
|  | res[0] = atan2(sneg, cneg); | 
|  | res[2] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | static void CalcEulerAngles(EulerAngles<Scalar, EulerSystem>& res, | 
|  | const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) { | 
|  | CalcEulerAngles_imp(res.angles(), mat, | 
|  | std::conditional_t<IsTaitBryan, internal::true_type, internal::false_type>()); | 
|  |  | 
|  | if (IsAlphaOpposite) res.alpha() = -res.alpha(); | 
|  |  | 
|  | if (IsBetaOpposite) res.beta() = -res.beta(); | 
|  |  | 
|  | if (IsGammaOpposite) res.gamma() = -res.gamma(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, class _System> | 
|  | friend class Eigen::EulerAngles; | 
|  |  | 
|  | template <typename System, typename Other, int OtherRows, int OtherCols> | 
|  | friend struct internal::eulerangles_assign_impl; | 
|  | }; | 
|  |  | 
|  | #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C; | 
|  |  | 
|  | /** Default XYZ Euler coordinate system. | 
|  | * \ingroup EulerAngles_Module | 
|  | */ | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(X, Y, Z) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(X, Y, X) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(X, Z, Y) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(X, Z, X) | 
|  |  | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Y, Z, X) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Y, Z, Y) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Y, X, Z) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Y, X, Y) | 
|  |  | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Z, X, Y) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Z, X, Z) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Z, Y, X) | 
|  | EIGEN_EULER_SYSTEM_TYPEDEF(Z, Y, Z) | 
|  | }  // namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_EULERSYSTEM_H |