|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Scalar> | 
|  | void r1updt(Matrix<Scalar, Dynamic, Dynamic> &s, const Matrix<Scalar, Dynamic, 1> &u, | 
|  | std::vector<JacobiRotation<Scalar> > &v_givens, std::vector<JacobiRotation<Scalar> > &w_givens, | 
|  | Matrix<Scalar, Dynamic, 1> &v, Matrix<Scalar, Dynamic, 1> &w, bool *sing) { | 
|  | typedef DenseIndex Index; | 
|  | const JacobiRotation<Scalar> IdentityRotation = JacobiRotation<Scalar>(1, 0); | 
|  |  | 
|  | /* Local variables */ | 
|  | const Index m = s.rows(); | 
|  | const Index n = s.cols(); | 
|  | Index i, j = 1; | 
|  | Scalar temp; | 
|  | JacobiRotation<Scalar> givens; | 
|  |  | 
|  | // r1updt had a broader usecase, but we don't use it here. And, more | 
|  | // importantly, we can not test it. | 
|  | eigen_assert(m == n); | 
|  | eigen_assert(u.size() == m); | 
|  | eigen_assert(v.size() == n); | 
|  | eigen_assert(w.size() == n); | 
|  |  | 
|  | /* move the nontrivial part of the last column of s into w. */ | 
|  | w[n - 1] = s(n - 1, n - 1); | 
|  |  | 
|  | /* rotate the vector v into a multiple of the n-th unit vector */ | 
|  | /* in such a way that a spike is introduced into w. */ | 
|  | for (j = n - 2; j >= 0; --j) { | 
|  | w[j] = 0.; | 
|  | if (v[j] != 0.) { | 
|  | /* determine a givens rotation which eliminates the */ | 
|  | /* j-th element of v. */ | 
|  | givens.makeGivens(-v[n - 1], v[j]); | 
|  |  | 
|  | /* apply the transformation to v and store the information */ | 
|  | /* necessary to recover the givens rotation. */ | 
|  | v[n - 1] = givens.s() * v[j] + givens.c() * v[n - 1]; | 
|  | v_givens[j] = givens; | 
|  |  | 
|  | /* apply the transformation to s and extend the spike in w. */ | 
|  | for (i = j; i < m; ++i) { | 
|  | temp = givens.c() * s(j, i) - givens.s() * w[i]; | 
|  | w[i] = givens.s() * s(j, i) + givens.c() * w[i]; | 
|  | s(j, i) = temp; | 
|  | } | 
|  | } else | 
|  | v_givens[j] = IdentityRotation; | 
|  | } | 
|  |  | 
|  | /* add the spike from the rank 1 update to w. */ | 
|  | w += v[n - 1] * u; | 
|  |  | 
|  | /* eliminate the spike. */ | 
|  | *sing = false; | 
|  | for (j = 0; j < n - 1; ++j) { | 
|  | if (w[j] != 0.) { | 
|  | /* determine a givens rotation which eliminates the */ | 
|  | /* j-th element of the spike. */ | 
|  | givens.makeGivens(-s(j, j), w[j]); | 
|  |  | 
|  | /* apply the transformation to s and reduce the spike in w. */ | 
|  | for (i = j; i < m; ++i) { | 
|  | temp = givens.c() * s(j, i) + givens.s() * w[i]; | 
|  | w[i] = -givens.s() * s(j, i) + givens.c() * w[i]; | 
|  | s(j, i) = temp; | 
|  | } | 
|  |  | 
|  | /* store the information necessary to recover the */ | 
|  | /* givens rotation. */ | 
|  | w_givens[j] = givens; | 
|  | } else | 
|  | w_givens[j] = IdentityRotation; | 
|  |  | 
|  | /* test for zero diagonal elements in the output s. */ | 
|  | if (s(j, j) == 0.) { | 
|  | *sing = true; | 
|  | } | 
|  | } | 
|  | /* move w back into the last column of the output s. */ | 
|  | s(n - 1, n - 1) = w[n - 1]; | 
|  |  | 
|  | if (s(j, j) == 0.) { | 
|  | *sing = true; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen |