| // -*- coding: utf-8 | 
 | // vim: set fileencoding=utf-8 | 
 |  | 
 | // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_NUMERICAL_DIFF_H | 
 | #define EIGEN_NUMERICAL_DIFF_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | enum NumericalDiffMode { Forward, Central }; | 
 |  | 
 | /** | 
 |  * This class allows you to add a method df() to your functor, which will | 
 |  * use numerical differentiation to compute an approximate of the | 
 |  * derivative for the functor. Of course, if you have an analytical form | 
 |  * for the derivative, you should rather implement df() by yourself. | 
 |  * | 
 |  * More information on | 
 |  * http://en.wikipedia.org/wiki/Numerical_differentiation | 
 |  * | 
 |  * Currently only "Forward" and "Central" scheme are implemented. | 
 |  */ | 
 | template <typename Functor_, NumericalDiffMode mode = Forward> | 
 | class NumericalDiff : public Functor_ { | 
 |  public: | 
 |   typedef Functor_ Functor; | 
 |   typedef typename Functor::Scalar Scalar; | 
 |   typedef typename Functor::InputType InputType; | 
 |   typedef typename Functor::ValueType ValueType; | 
 |   typedef typename Functor::JacobianType JacobianType; | 
 |  | 
 |   NumericalDiff(Scalar _epsfcn = 0.) : Functor(), epsfcn(_epsfcn) {} | 
 |   NumericalDiff(const Functor& f, Scalar _epsfcn = 0.) : Functor(f), epsfcn(_epsfcn) {} | 
 |  | 
 |   // forward constructors | 
 |   template <typename T0> | 
 |   NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {} | 
 |   template <typename T0, typename T1> | 
 |   NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {} | 
 |   template <typename T0, typename T1, typename T2> | 
 |   NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {} | 
 |  | 
 |   enum { InputsAtCompileTime = Functor::InputsAtCompileTime, ValuesAtCompileTime = Functor::ValuesAtCompileTime }; | 
 |  | 
 |   /** | 
 |    * return the number of evaluation of functor | 
 |    */ | 
 |   int df(const InputType& _x, JacobianType& jac) const { | 
 |     using std::abs; | 
 |     using std::sqrt; | 
 |     /* Local variables */ | 
 |     Scalar h; | 
 |     int nfev = 0; | 
 |     const typename InputType::Index n = _x.size(); | 
 |     const Scalar eps = sqrt(((std::max)(epsfcn, NumTraits<Scalar>::epsilon()))); | 
 |     ValueType val1, val2; | 
 |     InputType x = _x; | 
 |     // TODO : we should do this only if the size is not already known | 
 |     val1.resize(Functor::values()); | 
 |     val2.resize(Functor::values()); | 
 |  | 
 |     // initialization | 
 |     switch (mode) { | 
 |       case Forward: | 
 |         // compute f(x) | 
 |         Functor::operator()(x, val1); | 
 |         nfev++; | 
 |         break; | 
 |       case Central: | 
 |         // do nothing | 
 |         break; | 
 |       default: | 
 |         eigen_assert(false); | 
 |     }; | 
 |  | 
 |     // Function Body | 
 |     for (int j = 0; j < n; ++j) { | 
 |       h = eps * abs(x[j]); | 
 |       if (h == 0.) { | 
 |         h = eps; | 
 |       } | 
 |       switch (mode) { | 
 |         case Forward: | 
 |           x[j] += h; | 
 |           Functor::operator()(x, val2); | 
 |           nfev++; | 
 |           x[j] = _x[j]; | 
 |           jac.col(j) = (val2 - val1) / h; | 
 |           break; | 
 |         case Central: | 
 |           x[j] += h; | 
 |           Functor::operator()(x, val2); | 
 |           nfev++; | 
 |           x[j] -= 2 * h; | 
 |           Functor::operator()(x, val1); | 
 |           nfev++; | 
 |           x[j] = _x[j]; | 
 |           jac.col(j) = (val2 - val1) / (2 * h); | 
 |           break; | 
 |         default: | 
 |           eigen_assert(false); | 
 |       }; | 
 |     } | 
 |     return nfev; | 
 |   } | 
 |  | 
 |  private: | 
 |   Scalar epsfcn; | 
 |  | 
 |   NumericalDiff& operator=(const NumericalDiff&); | 
 | }; | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | // vim: ai ts=4 sts=4 et sw=4 | 
 | #endif  // EIGEN_NUMERICAL_DIFF_H |