| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #include <Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::RowMajor; | 
 | using Eigen::Tensor; | 
 |  | 
 | using Scalar = float; | 
 |  | 
 | using TypedLTOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT, true>; | 
 | using TypedLEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE, true>; | 
 | using TypedGTOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT, true>; | 
 | using TypedGEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE, true>; | 
 | using TypedEQOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ, true>; | 
 | using TypedNEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ, true>; | 
 |  | 
 | static void test_orderings() { | 
 |   Tensor<Scalar, 3> mat1(2, 3, 7); | 
 |   Tensor<Scalar, 3> mat2(2, 3, 7); | 
 |  | 
 |   mat1.setRandom(); | 
 |   mat2.setRandom(); | 
 |  | 
 |   Tensor<bool, 3> lt(2, 3, 7); | 
 |   Tensor<bool, 3> le(2, 3, 7); | 
 |   Tensor<bool, 3> gt(2, 3, 7); | 
 |   Tensor<bool, 3> ge(2, 3, 7); | 
 |  | 
 |   Tensor<Scalar, 3> typed_lt(2, 3, 7); | 
 |   Tensor<Scalar, 3> typed_le(2, 3, 7); | 
 |   Tensor<Scalar, 3> typed_gt(2, 3, 7); | 
 |   Tensor<Scalar, 3> typed_ge(2, 3, 7); | 
 |  | 
 |   lt = mat1 < mat2; | 
 |   le = mat1 <= mat2; | 
 |   gt = mat1 > mat2; | 
 |   ge = mat1 >= mat2; | 
 |  | 
 |   typed_lt = mat1.binaryExpr(mat2, TypedLTOp()); | 
 |   typed_le = mat1.binaryExpr(mat2, TypedLEOp()); | 
 |   typed_gt = mat1.binaryExpr(mat2, TypedGTOp()); | 
 |   typed_ge = mat1.binaryExpr(mat2, TypedGEOp()); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         VERIFY_IS_EQUAL(lt(i, j, k), mat1(i, j, k) < mat2(i, j, k)); | 
 |         VERIFY_IS_EQUAL(le(i, j, k), mat1(i, j, k) <= mat2(i, j, k)); | 
 |         VERIFY_IS_EQUAL(gt(i, j, k), mat1(i, j, k) > mat2(i, j, k)); | 
 |         VERIFY_IS_EQUAL(ge(i, j, k), mat1(i, j, k) >= mat2(i, j, k)); | 
 |  | 
 |         VERIFY_IS_EQUAL(lt(i, j, k), (bool)typed_lt(i, j, k)); | 
 |         VERIFY_IS_EQUAL(le(i, j, k), (bool)typed_le(i, j, k)); | 
 |         VERIFY_IS_EQUAL(gt(i, j, k), (bool)typed_gt(i, j, k)); | 
 |         VERIFY_IS_EQUAL(ge(i, j, k), (bool)typed_ge(i, j, k)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void test_equality() { | 
 |   Tensor<Scalar, 3> mat1(2, 3, 7); | 
 |   Tensor<Scalar, 3> mat2(2, 3, 7); | 
 |  | 
 |   mat1.setRandom(); | 
 |   mat2.setRandom(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         if (internal::random<bool>()) { | 
 |           mat2(i, j, k) = mat1(i, j, k); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   Tensor<bool, 3> eq(2, 3, 7); | 
 |   Tensor<bool, 3> ne(2, 3, 7); | 
 |  | 
 |   Tensor<Scalar, 3> typed_eq(2, 3, 7); | 
 |   Tensor<Scalar, 3> typed_ne(2, 3, 7); | 
 |  | 
 |   eq = (mat1 == mat2); | 
 |   ne = (mat1 != mat2); | 
 |  | 
 |   typed_eq = mat1.binaryExpr(mat2, TypedEQOp()); | 
 |   typed_ne = mat1.binaryExpr(mat2, TypedNEOp()); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         VERIFY_IS_EQUAL(eq(i, j, k), mat1(i, j, k) == mat2(i, j, k)); | 
 |         VERIFY_IS_EQUAL(ne(i, j, k), mat1(i, j, k) != mat2(i, j, k)); | 
 |  | 
 |         VERIFY_IS_EQUAL(eq(i, j, k), (bool)typed_eq(i, j, k)); | 
 |         VERIFY_IS_EQUAL(ne(i, j, k), (bool)typed_ne(i, j, k)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void test_isnan() { | 
 |   Tensor<Scalar, 3> mat(2, 3, 7); | 
 |  | 
 |   mat.setRandom(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         if (internal::random<bool>()) { | 
 |           mat(i, j, k) = std::numeric_limits<Scalar>::quiet_NaN(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   Tensor<bool, 3> nan(2, 3, 7); | 
 |   nan = (mat.isnan)(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         VERIFY_IS_EQUAL(nan(i, j, k), (std::isnan)(mat(i, j, k))); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void test_isinf() { | 
 |   Tensor<Scalar, 3> mat(2, 3, 7); | 
 |  | 
 |   mat.setRandom(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         if (internal::random<bool>()) { | 
 |           mat(i, j, k) = std::numeric_limits<Scalar>::infinity(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   Tensor<bool, 3> inf(2, 3, 7); | 
 |   inf = (mat.isinf)(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         VERIFY_IS_EQUAL(inf(i, j, k), (std::isinf)(mat(i, j, k))); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void test_isfinite() { | 
 |   Tensor<Scalar, 3> mat(2, 3, 7); | 
 |  | 
 |   mat.setRandom(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         if (internal::random<bool>()) { | 
 |           mat(i, j, k) = std::numeric_limits<Scalar>::infinity(); | 
 |         } | 
 |         if (internal::random<bool>()) { | 
 |           mat(i, j, k) = std::numeric_limits<Scalar>::quiet_NaN(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   Tensor<bool, 3> inf(2, 3, 7); | 
 |   inf = (mat.isfinite)(); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 7; ++k) { | 
 |         VERIFY_IS_EQUAL(inf(i, j, k), (std::isfinite)(mat(i, j, k))); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_comparisons) { | 
 |   CALL_SUBTEST(test_orderings()); | 
 |   CALL_SUBTEST(test_equality()); | 
 |   CALL_SUBTEST(test_isnan()); | 
 |   CALL_SUBTEST(test_isinf()); | 
 |   CALL_SUBTEST(test_isfinite()); | 
 | } |