| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <numeric> | 
 | #include <Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::Tensor; | 
 |  | 
 | template <int DataLayout> | 
 | static void test_trivial_reductions() { | 
 |   { | 
 |     Tensor<float, 0, DataLayout> tensor; | 
 |     tensor.setRandom(); | 
 |     array<ptrdiff_t, 0> reduction_axis; | 
 |  | 
 |     Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); | 
 |     VERIFY_IS_EQUAL(result(), tensor()); | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<float, 1, DataLayout> tensor(7); | 
 |     tensor.setRandom(); | 
 |     array<ptrdiff_t, 0> reduction_axis; | 
 |  | 
 |     Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis); | 
 |     VERIFY_IS_EQUAL(result.dimension(0), 7); | 
 |     for (int i = 0; i < 7; ++i) { | 
 |       VERIFY_IS_EQUAL(result(i), tensor(i)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<float, 2, DataLayout> tensor(2, 3); | 
 |     tensor.setRandom(); | 
 |     array<ptrdiff_t, 0> reduction_axis; | 
 |  | 
 |     Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis); | 
 |     VERIFY_IS_EQUAL(result.dimension(0), 2); | 
 |     VERIFY_IS_EQUAL(result.dimension(1), 3); | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         VERIFY_IS_EQUAL(result(i, j), tensor(i, j)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename Scalar, int DataLayout> | 
 | static void test_simple_reductions() { | 
 |   Tensor<Scalar, 4, DataLayout> tensor(2, 3, 5, 7); | 
 |   tensor.setRandom(); | 
 |   // Add a little offset so that the product reductions won't be close to zero. | 
 |   tensor += tensor.constant(Scalar(0.5f)); | 
 |   array<ptrdiff_t, 2> reduction_axis2; | 
 |   reduction_axis2[0] = 1; | 
 |   reduction_axis2[1] = 3; | 
 |  | 
 |   Tensor<Scalar, 2, DataLayout> result = tensor.sum(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 5); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 5; ++j) { | 
 |       Scalar sum = Scalar(0.0f); | 
 |       for (int k = 0; k < 3; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           sum += tensor(i, k, j, l); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), sum); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<Scalar, 0, DataLayout> sum1 = tensor.sum(); | 
 |     VERIFY_IS_EQUAL(sum1.rank(), 0); | 
 |  | 
 |     array<ptrdiff_t, 4> reduction_axis4; | 
 |     reduction_axis4[0] = 0; | 
 |     reduction_axis4[1] = 1; | 
 |     reduction_axis4[2] = 2; | 
 |     reduction_axis4[3] = 3; | 
 |     Tensor<Scalar, 0, DataLayout> sum2 = tensor.sum(reduction_axis4); | 
 |     VERIFY_IS_EQUAL(sum2.rank(), 0); | 
 |  | 
 |     VERIFY_IS_APPROX(sum1(), sum2()); | 
 |   } | 
 |  | 
 |   reduction_axis2[0] = 0; | 
 |   reduction_axis2[1] = 2; | 
 |   result = tensor.prod(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 3); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 7); | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 7; ++j) { | 
 |       Scalar prod = Scalar(1.0f); | 
 |       for (int k = 0; k < 2; ++k) { | 
 |         for (int l = 0; l < 5; ++l) { | 
 |           prod *= tensor(k, i, l, j); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), prod); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<Scalar, 0, DataLayout> prod1 = tensor.prod(); | 
 |     VERIFY_IS_EQUAL(prod1.rank(), 0); | 
 |  | 
 |     array<ptrdiff_t, 4> reduction_axis4; | 
 |     reduction_axis4[0] = 0; | 
 |     reduction_axis4[1] = 1; | 
 |     reduction_axis4[2] = 2; | 
 |     reduction_axis4[3] = 3; | 
 |     Tensor<Scalar, 0, DataLayout> prod2 = tensor.prod(reduction_axis4); | 
 |     VERIFY_IS_EQUAL(prod2.rank(), 0); | 
 |  | 
 |     VERIFY_IS_APPROX(prod1(), prod2()); | 
 |   } | 
 |  | 
 |   reduction_axis2[0] = 0; | 
 |   reduction_axis2[1] = 2; | 
 |   result = tensor.maximum(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 3); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 7); | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 7; ++j) { | 
 |       Scalar max_val = std::numeric_limits<Scalar>::lowest(); | 
 |       for (int k = 0; k < 2; ++k) { | 
 |         for (int l = 0; l < 5; ++l) { | 
 |           max_val = (std::max)(max_val, tensor(k, i, l, j)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), max_val); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<Scalar, 0, DataLayout> max1 = tensor.maximum(); | 
 |     VERIFY_IS_EQUAL(max1.rank(), 0); | 
 |  | 
 |     array<ptrdiff_t, 4> reduction_axis4; | 
 |     reduction_axis4[0] = 0; | 
 |     reduction_axis4[1] = 1; | 
 |     reduction_axis4[2] = 2; | 
 |     reduction_axis4[3] = 3; | 
 |     Tensor<Scalar, 0, DataLayout> max2 = tensor.maximum(reduction_axis4); | 
 |     VERIFY_IS_EQUAL(max2.rank(), 0); | 
 |  | 
 |     VERIFY_IS_APPROX(max1(), max2()); | 
 |   } | 
 |  | 
 |   reduction_axis2[0] = 0; | 
 |   reduction_axis2[1] = 1; | 
 |   result = tensor.minimum(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 5); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 7); | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     for (int j = 0; j < 7; ++j) { | 
 |       Scalar min_val = (std::numeric_limits<Scalar>::max)(); | 
 |       for (int k = 0; k < 2; ++k) { | 
 |         for (int l = 0; l < 3; ++l) { | 
 |           min_val = (std::min)(min_val, tensor(k, l, i, j)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), min_val); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<Scalar, 0, DataLayout> min1 = tensor.minimum(); | 
 |     VERIFY_IS_EQUAL(min1.rank(), 0); | 
 |  | 
 |     array<ptrdiff_t, 4> reduction_axis4; | 
 |     reduction_axis4[0] = 0; | 
 |     reduction_axis4[1] = 1; | 
 |     reduction_axis4[2] = 2; | 
 |     reduction_axis4[3] = 3; | 
 |     Tensor<Scalar, 0, DataLayout> min2 = tensor.minimum(reduction_axis4); | 
 |     VERIFY_IS_EQUAL(min2.rank(), 0); | 
 |  | 
 |     VERIFY_IS_APPROX(min1(), min2()); | 
 |   } | 
 |  | 
 |   reduction_axis2[0] = 0; | 
 |   reduction_axis2[1] = 1; | 
 |   result = tensor.mean(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 5); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 7); | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     for (int j = 0; j < 7; ++j) { | 
 |       Scalar sum = Scalar(0.0f); | 
 |       int count = 0; | 
 |       for (int k = 0; k < 2; ++k) { | 
 |         for (int l = 0; l < 3; ++l) { | 
 |           sum += tensor(k, l, i, j); | 
 |           ++count; | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), sum / Scalar(count)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<Scalar, 0, DataLayout> mean1 = tensor.mean(); | 
 |     VERIFY_IS_EQUAL(mean1.rank(), 0); | 
 |  | 
 |     array<ptrdiff_t, 4> reduction_axis4; | 
 |     reduction_axis4[0] = 0; | 
 |     reduction_axis4[1] = 1; | 
 |     reduction_axis4[2] = 2; | 
 |     reduction_axis4[3] = 3; | 
 |     Tensor<Scalar, 0, DataLayout> mean2 = tensor.mean(reduction_axis4); | 
 |     VERIFY_IS_EQUAL(mean2.rank(), 0); | 
 |  | 
 |     VERIFY_IS_APPROX(mean1(), mean2()); | 
 |   } | 
 |  | 
 |   { | 
 |     Tensor<int, 1> ints(10); | 
 |     std::iota(ints.data(), ints.data() + ints.dimension(0), 0); | 
 |  | 
 |     TensorFixedSize<bool, Sizes<>> all_; | 
 |     all_ = ints.all(); | 
 |     VERIFY(!all_()); | 
 |     all_ = (ints >= ints.constant(0)).all(); | 
 |     VERIFY(all_()); | 
 |  | 
 |     TensorFixedSize<bool, Sizes<>> any; | 
 |     any = (ints > ints.constant(10)).any(); | 
 |     VERIFY(!any()); | 
 |     any = (ints < ints.constant(1)).any(); | 
 |     VERIFY(any()); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_reductions_in_expr() { | 
 |   Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); | 
 |   tensor.setRandom(); | 
 |   array<ptrdiff_t, 2> reduction_axis2; | 
 |   reduction_axis2[0] = 1; | 
 |   reduction_axis2[1] = 3; | 
 |  | 
 |   Tensor<float, 2, DataLayout> result(2, 5); | 
 |   result = result.constant(1.0f) - tensor.sum(reduction_axis2); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 5); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 5; ++j) { | 
 |       float sum = 0.0f; | 
 |       for (int k = 0; k < 3; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           sum += tensor(i, k, j, l); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_APPROX(result(i, j), 1.0f - sum); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_full_reductions() { | 
 |   Tensor<float, 2, DataLayout> tensor(2, 3); | 
 |   tensor.setRandom(); | 
 |   array<ptrdiff_t, 2> reduction_axis; | 
 |   reduction_axis[0] = 0; | 
 |   reduction_axis[1] = 1; | 
 |  | 
 |   Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); | 
 |   VERIFY_IS_EQUAL(result.rank(), 0); | 
 |  | 
 |   float sum = 0.0f; | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       sum += tensor(i, j); | 
 |     } | 
 |   } | 
 |   VERIFY_IS_APPROX(result(0), sum); | 
 |  | 
 |   result = tensor.square().sum(reduction_axis).sqrt(); | 
 |   VERIFY_IS_EQUAL(result.rank(), 0); | 
 |  | 
 |   sum = 0.0f; | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       sum += tensor(i, j) * tensor(i, j); | 
 |     } | 
 |   } | 
 |   VERIFY_IS_APPROX(result(), sqrtf(sum)); | 
 | } | 
 |  | 
 | struct UserReducer { | 
 |   static const bool PacketAccess = false; | 
 |   UserReducer(float offset) : offset_(offset) {} | 
 |   void reduce(const float val, float* accum) { *accum += val * val; } | 
 |   float initialize() const { return 0; } | 
 |   float finalize(const float accum) const { return 1.0f / (accum + offset_); } | 
 |  | 
 |  private: | 
 |   const float offset_; | 
 | }; | 
 |  | 
 | template <int DataLayout> | 
 | static void test_user_defined_reductions() { | 
 |   Tensor<float, 2, DataLayout> tensor(5, 7); | 
 |   tensor.setRandom(); | 
 |   array<ptrdiff_t, 1> reduction_axis; | 
 |   reduction_axis[0] = 1; | 
 |  | 
 |   UserReducer reducer(10.0f); | 
 |   Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer); | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 5); | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     float expected = 10.0f; | 
 |     for (int j = 0; j < 7; ++j) { | 
 |       expected += tensor(i, j) * tensor(i, j); | 
 |     } | 
 |     expected = 1.0f / expected; | 
 |     VERIFY_IS_APPROX(result(i), expected); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_tensor_maps() { | 
 |   int inputs[2 * 3 * 5 * 7]; | 
 |   TensorMap<Tensor<int, 4, DataLayout>> tensor_map(inputs, 2, 3, 5, 7); | 
 |   TensorMap<Tensor<const int, 4, DataLayout>> tensor_map_const(inputs, 2, 3, 5, 7); | 
 |   const TensorMap<Tensor<const int, 4, DataLayout>> tensor_map_const_const(inputs, 2, 3, 5, 7); | 
 |  | 
 |   tensor_map.setRandom(); | 
 |   array<ptrdiff_t, 2> reduction_axis; | 
 |   reduction_axis[0] = 1; | 
 |   reduction_axis[1] = 3; | 
 |  | 
 |   Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis); | 
 |   Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis); | 
 |   Tensor<int, 2, DataLayout> result3 = tensor_map_const_const.sum(reduction_axis); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 5; ++j) { | 
 |       int sum = 0; | 
 |       for (int k = 0; k < 3; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           sum += tensor_map(i, k, j, l); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_EQUAL(result(i, j), sum); | 
 |       VERIFY_IS_EQUAL(result2(i, j), sum); | 
 |       VERIFY_IS_EQUAL(result3(i, j), sum); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_static_dims() { | 
 |   Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
 |   Tensor<float, 2, DataLayout> out(72, 97); | 
 |   in.setRandom(); | 
 |  | 
 |   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3>> reduction_axis; | 
 |  | 
 |   out = in.maximum(reduction_axis); | 
 |  | 
 |   for (int i = 0; i < 72; ++i) { | 
 |     for (int j = 0; j < 97; ++j) { | 
 |       float expected = -1e10f; | 
 |       for (int k = 0; k < 53; ++k) { | 
 |         for (int l = 0; l < 113; ++l) { | 
 |           expected = (std::max)(expected, in(i, k, j, l)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_EQUAL(out(i, j), expected); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_innermost_last_dims() { | 
 |   Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
 |   Tensor<float, 2, DataLayout> out(97, 113); | 
 |   in.setRandom(); | 
 |  | 
 |   // Reduce on the innermost dimensions. | 
 |   // This triggers the use of packets for ColMajor. | 
 |   Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1>> reduction_axis; | 
 |  | 
 |   out = in.maximum(reduction_axis); | 
 |  | 
 |   for (int i = 0; i < 97; ++i) { | 
 |     for (int j = 0; j < 113; ++j) { | 
 |       float expected = -1e10f; | 
 |       for (int k = 0; k < 53; ++k) { | 
 |         for (int l = 0; l < 72; ++l) { | 
 |           expected = (std::max)(expected, in(l, k, i, j)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_EQUAL(out(i, j), expected); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_innermost_first_dims() { | 
 |   Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
 |   Tensor<float, 2, DataLayout> out(72, 53); | 
 |   in.setRandom(); | 
 |  | 
 |   // Reduce on the innermost dimensions. | 
 |   // This triggers the use of packets for RowMajor. | 
 |   Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis; | 
 |  | 
 |   out = in.maximum(reduction_axis); | 
 |  | 
 |   for (int i = 0; i < 72; ++i) { | 
 |     for (int j = 0; j < 53; ++j) { | 
 |       float expected = -1e10f; | 
 |       for (int k = 0; k < 97; ++k) { | 
 |         for (int l = 0; l < 113; ++l) { | 
 |           expected = (std::max)(expected, in(i, j, k, l)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_EQUAL(out(i, j), expected); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_reduce_middle_dims() { | 
 |   Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
 |   Tensor<float, 2, DataLayout> out(72, 53); | 
 |   in.setRandom(); | 
 |  | 
 |   // Reduce on the innermost dimensions. | 
 |   // This triggers the use of packets for RowMajor. | 
 |   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis; | 
 |  | 
 |   out = in.maximum(reduction_axis); | 
 |  | 
 |   for (int i = 0; i < 72; ++i) { | 
 |     for (int j = 0; j < 113; ++j) { | 
 |       float expected = -1e10f; | 
 |       for (int k = 0; k < 53; ++k) { | 
 |         for (int l = 0; l < 97; ++l) { | 
 |           expected = (std::max)(expected, in(i, k, l, j)); | 
 |         } | 
 |       } | 
 |       VERIFY_IS_EQUAL(out(i, j), expected); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename ScalarType, int num_elements, int max_mean> | 
 | void test_sum_accuracy() { | 
 |   Tensor<double, 1> double_tensor(num_elements); | 
 |   Tensor<ScalarType, 1> tensor(num_elements); | 
 |   for (double prescribed_mean = 0; prescribed_mean <= max_mean; | 
 |        prescribed_mean = numext::maxi(1.0, prescribed_mean * 3.99)) { | 
 |     // FIXME: NormalRandomGenerator doesn't work in bfloat and half. | 
 |     double_tensor.setRandom<Eigen::internal::NormalRandomGenerator<double>>(); | 
 |     double_tensor += double_tensor.constant(prescribed_mean); | 
 |     tensor = double_tensor.cast<ScalarType>(); | 
 |  | 
 |     Tensor<ScalarType, 0> sum; | 
 |     sum = tensor.sum(); | 
 |  | 
 |     // Compute the reference value in double precsion. | 
 |     double expected_sum = 0.0; | 
 |     double abs_sum = 0.0; | 
 |     for (int i = 0; i < num_elements; ++i) { | 
 |       expected_sum += static_cast<double>(tensor(i)); | 
 |       abs_sum += static_cast<double>(numext::abs(tensor(i))); | 
 |     } | 
 |     // Test against probabilistic forward error bound. In reality, the error is much smaller | 
 |     // when we use tree summation. | 
 |     double err = Eigen::numext::abs(static_cast<double>(sum()) - expected_sum); | 
 |     double tol = numext::sqrt(static_cast<double>(num_elements)) * | 
 |                  static_cast<double>(NumTraits<ScalarType>::epsilon()) * abs_sum; | 
 |     VERIFY_LE(err, tol); | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_reduction) { | 
 |   CALL_SUBTEST(test_trivial_reductions<ColMajor>()); | 
 |   CALL_SUBTEST(test_trivial_reductions<RowMajor>()); | 
 |   CALL_SUBTEST((test_simple_reductions<float, ColMajor>())); | 
 |   CALL_SUBTEST((test_simple_reductions<float, RowMajor>())); | 
 |   CALL_SUBTEST((test_simple_reductions<Eigen::half, ColMajor>())); | 
 |   CALL_SUBTEST((test_simple_reductions<Eigen::bfloat16, ColMajor>())); | 
 |   CALL_SUBTEST(test_reductions_in_expr<ColMajor>()); | 
 |   CALL_SUBTEST(test_reductions_in_expr<RowMajor>()); | 
 |   CALL_SUBTEST(test_full_reductions<ColMajor>()); | 
 |   CALL_SUBTEST(test_full_reductions<RowMajor>()); | 
 |   CALL_SUBTEST(test_user_defined_reductions<ColMajor>()); | 
 |   CALL_SUBTEST(test_user_defined_reductions<RowMajor>()); | 
 |   CALL_SUBTEST(test_tensor_maps<ColMajor>()); | 
 |   CALL_SUBTEST(test_tensor_maps<RowMajor>()); | 
 |   CALL_SUBTEST(test_static_dims<ColMajor>()); | 
 |   CALL_SUBTEST(test_static_dims<RowMajor>()); | 
 |   CALL_SUBTEST(test_innermost_last_dims<ColMajor>()); | 
 |   CALL_SUBTEST(test_innermost_last_dims<RowMajor>()); | 
 |   CALL_SUBTEST(test_innermost_first_dims<ColMajor>()); | 
 |   CALL_SUBTEST(test_innermost_first_dims<RowMajor>()); | 
 |   CALL_SUBTEST(test_reduce_middle_dims<ColMajor>()); | 
 |   CALL_SUBTEST(test_reduce_middle_dims<RowMajor>()); | 
 |   CALL_SUBTEST((test_sum_accuracy<float, 10 * 1024 * 1024, 8 * 1024>())); | 
 |   CALL_SUBTEST((test_sum_accuracy<Eigen::bfloat16, 10 * 1024 * 1024, 8 * 1024>())); | 
 |   // The range of half is limited to 65519 when using round-to-even, | 
 |   // so we are severely limited in the size and mean of the tensors | 
 |   // we can reduce without overflow. | 
 |   CALL_SUBTEST((test_sum_accuracy<Eigen::half, 4 * 1024, 16>())); | 
 |   CALL_SUBTEST((test_sum_accuracy<Eigen::half, 10 * 1024 * 1024, 0>())); | 
 | } |