| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_ORTHOMETHODS_H |
| #define EIGEN_ORTHOMETHODS_H |
| |
| /** \geometry_module |
| * |
| * \returns the cross product of \c *this and \a other |
| * |
| * Here is a very good explanation of cross-product: http://xkcd.com/199/ |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| inline typename MatrixBase<Derived>::PlainMatrixType |
| MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) |
| |
| // Note that there is no need for an expression here since the compiler |
| // optimize such a small temporary very well (even within a complex expression) |
| const typename ei_nested<Derived,2>::type lhs(derived()); |
| const typename ei_nested<OtherDerived,2>::type rhs(other.derived()); |
| return typename ei_plain_matrix_type<Derived>::type( |
| lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1), |
| lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2), |
| lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0) |
| ); |
| } |
| |
| template<typename Derived, int Size = Derived::SizeAtCompileTime> |
| struct ei_unitOrthogonal_selector |
| { |
| typedef typename ei_plain_matrix_type<Derived>::type VectorType; |
| typedef typename ei_traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| inline static VectorType run(const Derived& src) |
| { |
| VectorType perp(src.size()); |
| /* Let us compute the crossed product of *this with a vector |
| * that is not too close to being colinear to *this. |
| */ |
| |
| /* unless the x and y coords are both close to zero, we can |
| * simply take ( -y, x, 0 ) and normalize it. |
| */ |
| if((!ei_isMuchSmallerThan(src.x(), src.z())) |
| || (!ei_isMuchSmallerThan(src.y(), src.z()))) |
| { |
| RealScalar invnm = RealScalar(1)/src.template start<2>().norm(); |
| perp.coeffRef(0) = -ei_conj(src.y())*invnm; |
| perp.coeffRef(1) = ei_conj(src.x())*invnm; |
| perp.coeffRef(2) = 0; |
| } |
| /* if both x and y are close to zero, then the vector is close |
| * to the z-axis, so it's far from colinear to the x-axis for instance. |
| * So we take the crossed product with (1,0,0) and normalize it. |
| */ |
| else |
| { |
| RealScalar invnm = RealScalar(1)/src.template end<2>().norm(); |
| perp.coeffRef(0) = 0; |
| perp.coeffRef(1) = -ei_conj(src.z())*invnm; |
| perp.coeffRef(2) = ei_conj(src.y())*invnm; |
| } |
| if( (Derived::SizeAtCompileTime!=Dynamic && Derived::SizeAtCompileTime>3) |
| || (Derived::SizeAtCompileTime==Dynamic && src.size()>3) ) |
| perp.end(src.size()-3).setZero(); |
| |
| return perp; |
| } |
| }; |
| |
| template<typename Derived> |
| struct ei_unitOrthogonal_selector<Derived,2> |
| { |
| typedef typename ei_plain_matrix_type<Derived>::type VectorType; |
| inline static VectorType run(const Derived& src) |
| { return VectorType(-ei_conj(src.y()), ei_conj(src.x())).normalized(); } |
| }; |
| |
| /** \returns a unit vector which is orthogonal to \c *this |
| * |
| * The size of \c *this must be at least 2. If the size is exactly 2, |
| * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). |
| * |
| * \sa cross() |
| */ |
| template<typename Derived> |
| typename MatrixBase<Derived>::PlainMatrixType |
| MatrixBase<Derived>::unitOrthogonal() const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| return ei_unitOrthogonal_selector<Derived>::run(derived()); |
| } |
| |
| #endif // EIGEN_ORTHOMETHODS_H |