| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_LDLT_H | 
 | #define EIGEN_LDLT_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 | template <typename MatrixType_, int UpLo_> | 
 | struct traits<LDLT<MatrixType_, UpLo_> > : traits<MatrixType_> { | 
 |   typedef MatrixXpr XprKind; | 
 |   typedef SolverStorage StorageKind; | 
 |   typedef int StorageIndex; | 
 |   enum { Flags = 0 }; | 
 | }; | 
 |  | 
 | template <typename MatrixType, int UpLo> | 
 | struct LDLT_Traits; | 
 |  | 
 | // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef | 
 | enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; | 
 | }  // namespace internal | 
 |  | 
 | /** \ingroup Cholesky_Module | 
 |  * | 
 |  * \class LDLT | 
 |  * | 
 |  * \brief Robust Cholesky decomposition of a matrix with pivoting | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which to compute the LDL^T Cholesky decomposition | 
 |  * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. | 
 |  *             The other triangular part won't be read. | 
 |  * | 
 |  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite | 
 |  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L | 
 |  * is lower triangular with a unit diagonal and D is a diagonal matrix. | 
 |  * | 
 |  * The decomposition uses pivoting to ensure stability, so that D will have | 
 |  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root | 
 |  * on D also stabilizes the computation. | 
 |  * | 
 |  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky | 
 |  * decomposition to determine whether a system of equations has a solution. | 
 |  * | 
 |  * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
 |  * | 
 |  * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT | 
 |  */ | 
 | template <typename MatrixType_, int UpLo_> | 
 | class LDLT : public SolverBase<LDLT<MatrixType_, UpLo_> > { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef SolverBase<LDLT> Base; | 
 |   friend class SolverBase<LDLT>; | 
 |  | 
 |   EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) | 
 |   enum { | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
 |     UpLo = UpLo_ | 
 |   }; | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; | 
 |  | 
 |   typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
 |   typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
 |  | 
 |   typedef internal::LDLT_Traits<MatrixType, UpLo> Traits; | 
 |  | 
 |   /** \brief Default Constructor. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user intends to | 
 |    * perform decompositions via LDLT::compute(const MatrixType&). | 
 |    */ | 
 |   LDLT() : m_matrix(), m_transpositions(), m_sign(internal::ZeroSign), m_isInitialized(false) {} | 
 |  | 
 |   /** \brief Default Constructor with memory preallocation | 
 |    * | 
 |    * Like the default constructor but with preallocation of the internal data | 
 |    * according to the specified problem \a size. | 
 |    * \sa LDLT() | 
 |    */ | 
 |   explicit LDLT(Index size) | 
 |       : m_matrix(size, size), | 
 |         m_transpositions(size), | 
 |         m_temporary(size), | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false) {} | 
 |  | 
 |   /** \brief Constructor with decomposition | 
 |    * | 
 |    * This calculates the decomposition for the input \a matrix. | 
 |    * | 
 |    * \sa LDLT(Index size) | 
 |    */ | 
 |   template <typename InputType> | 
 |   explicit LDLT(const EigenBase<InputType>& matrix) | 
 |       : m_matrix(matrix.rows(), matrix.cols()), | 
 |         m_transpositions(matrix.rows()), | 
 |         m_temporary(matrix.rows()), | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false) { | 
 |     compute(matrix.derived()); | 
 |   } | 
 |  | 
 |   /** \brief Constructs a LDLT factorization from a given matrix | 
 |    * | 
 |    * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c | 
 |    * MatrixType is a Eigen::Ref. | 
 |    * | 
 |    * \sa LDLT(const EigenBase&) | 
 |    */ | 
 |   template <typename InputType> | 
 |   explicit LDLT(EigenBase<InputType>& matrix) | 
 |       : m_matrix(matrix.derived()), | 
 |         m_transpositions(matrix.rows()), | 
 |         m_temporary(matrix.rows()), | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false) { | 
 |     compute(matrix.derived()); | 
 |   } | 
 |  | 
 |   /** Clear any existing decomposition | 
 |    * \sa rankUpdate(w,sigma) | 
 |    */ | 
 |   void setZero() { m_isInitialized = false; } | 
 |  | 
 |   /** \returns a view of the upper triangular matrix U */ | 
 |   inline typename Traits::MatrixU matrixU() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return Traits::getU(m_matrix); | 
 |   } | 
 |  | 
 |   /** \returns a view of the lower triangular matrix L */ | 
 |   inline typename Traits::MatrixL matrixL() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return Traits::getL(m_matrix); | 
 |   } | 
 |  | 
 |   /** \returns the permutation matrix P as a transposition sequence. | 
 |    */ | 
 |   inline const TranspositionType& transpositionsP() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_transpositions; | 
 |   } | 
 |  | 
 |   /** \returns the coefficients of the diagonal matrix D */ | 
 |   inline Diagonal<const MatrixType> vectorD() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_matrix.diagonal(); | 
 |   } | 
 |  | 
 |   /** \returns true if the matrix is positive (semidefinite) */ | 
 |   inline bool isPositive() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; | 
 |   } | 
 |  | 
 |   /** \returns true if the matrix is negative (semidefinite) */ | 
 |   inline bool isNegative(void) const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; | 
 |   } | 
 |  | 
 | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
 |   /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. | 
 |    * | 
 |    * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . | 
 |    * | 
 |    * \note_about_checking_solutions | 
 |    * | 
 |    * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ | 
 |    * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, | 
 |    * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then | 
 |    * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the | 
 |    * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function | 
 |    * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. | 
 |    * | 
 |    * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() | 
 |    */ | 
 |   template <typename Rhs> | 
 |   inline const Solve<LDLT, Rhs> solve(const MatrixBase<Rhs>& b) const; | 
 | #endif | 
 |  | 
 |   template <typename Derived> | 
 |   bool solveInPlace(MatrixBase<Derived>& bAndX) const; | 
 |  | 
 |   template <typename InputType> | 
 |   LDLT& compute(const EigenBase<InputType>& matrix); | 
 |  | 
 |   /** \returns an estimate of the reciprocal condition number of the matrix of | 
 |    *  which \c *this is the LDLT decomposition. | 
 |    */ | 
 |   RealScalar rcond() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return internal::rcond_estimate_helper(m_l1_norm, *this); | 
 |   } | 
 |  | 
 |   template <typename Derived> | 
 |   LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha = 1); | 
 |  | 
 |   /** \returns the internal LDLT decomposition matrix | 
 |    * | 
 |    * TODO: document the storage layout | 
 |    */ | 
 |   inline const MatrixType& matrixLDLT() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_matrix; | 
 |   } | 
 |  | 
 |   MatrixType reconstructedMatrix() const; | 
 |  | 
 |   /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix | 
 |    * is self-adjoint. | 
 |    * | 
 |    * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: | 
 |    * \code x = decomposition.adjoint().solve(b) \endcode | 
 |    */ | 
 |   const LDLT& adjoint() const { return *this; } | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } | 
 |   EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the factorization failed because of a zero pivot. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   template <typename RhsType, typename DstType> | 
 |   void _solve_impl(const RhsType& rhs, DstType& dst) const; | 
 |  | 
 |   template <bool Conjugate, typename RhsType, typename DstType> | 
 |   void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; | 
 | #endif | 
 |  | 
 |  protected: | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |  | 
 |   /** \internal | 
 |    * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. | 
 |    * The strict upper part is used during the decomposition, the strict lower | 
 |    * part correspond to the coefficients of L (its diagonal is equal to 1 and | 
 |    * is not stored), and the diagonal entries correspond to D. | 
 |    */ | 
 |   MatrixType m_matrix; | 
 |   RealScalar m_l1_norm; | 
 |   TranspositionType m_transpositions; | 
 |   TmpMatrixType m_temporary; | 
 |   internal::SignMatrix m_sign; | 
 |   bool m_isInitialized; | 
 |   ComputationInfo m_info; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <int UpLo> | 
 | struct ldlt_inplace; | 
 |  | 
 | template <> | 
 | struct ldlt_inplace<Lower> { | 
 |   template <typename MatrixType, typename TranspositionType, typename Workspace> | 
 |   static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) { | 
 |     using std::abs; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename TranspositionType::StorageIndex IndexType; | 
 |     eigen_assert(mat.rows() == mat.cols()); | 
 |     const Index size = mat.rows(); | 
 |     bool found_zero_pivot = false; | 
 |     bool ret = true; | 
 |  | 
 |     if (size <= 1) { | 
 |       transpositions.setIdentity(); | 
 |       if (size == 0) | 
 |         sign = ZeroSign; | 
 |       else if (numext::real(mat.coeff(0, 0)) > static_cast<RealScalar>(0)) | 
 |         sign = PositiveSemiDef; | 
 |       else if (numext::real(mat.coeff(0, 0)) < static_cast<RealScalar>(0)) | 
 |         sign = NegativeSemiDef; | 
 |       else | 
 |         sign = ZeroSign; | 
 |       return true; | 
 |     } | 
 |  | 
 |     for (Index k = 0; k < size; ++k) { | 
 |       // Find largest diagonal element | 
 |       Index index_of_biggest_in_corner; | 
 |       mat.diagonal().tail(size - k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | 
 |       index_of_biggest_in_corner += k; | 
 |  | 
 |       transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); | 
 |       if (k != index_of_biggest_in_corner) { | 
 |         // apply the transposition while taking care to consider only | 
 |         // the lower triangular part | 
 |         Index s = size - index_of_biggest_in_corner - 1;  // trailing size after the biggest element | 
 |         mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); | 
 |         mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); | 
 |         std::swap(mat.coeffRef(k, k), mat.coeffRef(index_of_biggest_in_corner, index_of_biggest_in_corner)); | 
 |         for (Index i = k + 1; i < index_of_biggest_in_corner; ++i) { | 
 |           Scalar tmp = mat.coeffRef(i, k); | 
 |           mat.coeffRef(i, k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner, i)); | 
 |           mat.coeffRef(index_of_biggest_in_corner, i) = numext::conj(tmp); | 
 |         } | 
 |         if (NumTraits<Scalar>::IsComplex) | 
 |           mat.coeffRef(index_of_biggest_in_corner, k) = numext::conj(mat.coeff(index_of_biggest_in_corner, k)); | 
 |       } | 
 |  | 
 |       // partition the matrix: | 
 |       //       A00 |  -  |  - | 
 |       // lu  = A10 | A11 |  - | 
 |       //       A20 | A21 | A22 | 
 |       Index rs = size - k - 1; | 
 |       Block<MatrixType, Dynamic, 1> A21(mat, k + 1, k, rs, 1); | 
 |       Block<MatrixType, 1, Dynamic> A10(mat, k, 0, 1, k); | 
 |       Block<MatrixType, Dynamic, Dynamic> A20(mat, k + 1, 0, rs, k); | 
 |  | 
 |       if (k > 0) { | 
 |         temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | 
 |         mat.coeffRef(k, k) -= (A10 * temp.head(k)).value(); | 
 |         if (rs > 0) A21.noalias() -= A20 * temp.head(k); | 
 |       } | 
 |  | 
 |       // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot | 
 |       // was smaller than the cutoff value. However, since LDLT is not rank-revealing | 
 |       // we should only make sure that we do not introduce INF or NaN values. | 
 |       // Remark that LAPACK also uses 0 as the cutoff value. | 
 |       RealScalar realAkk = numext::real(mat.coeffRef(k, k)); | 
 |       bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); | 
 |  | 
 |       if (k == 0 && !pivot_is_valid) { | 
 |         // The entire diagonal is zero, there is nothing more to do | 
 |         // except filling the transpositions, and checking whether the matrix is zero. | 
 |         sign = ZeroSign; | 
 |         for (Index j = 0; j < size; ++j) { | 
 |           transpositions.coeffRef(j) = IndexType(j); | 
 |           ret = ret && (mat.col(j).tail(size - j - 1).array() == Scalar(0)).all(); | 
 |         } | 
 |         return ret; | 
 |       } | 
 |  | 
 |       if ((rs > 0) && pivot_is_valid) | 
 |         A21 /= realAkk; | 
 |       else if (rs > 0) | 
 |         ret = ret && (A21.array() == Scalar(0)).all(); | 
 |  | 
 |       if (found_zero_pivot && pivot_is_valid) | 
 |         ret = false;  // factorization failed | 
 |       else if (!pivot_is_valid) | 
 |         found_zero_pivot = true; | 
 |  | 
 |       if (sign == PositiveSemiDef) { | 
 |         if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; | 
 |       } else if (sign == NegativeSemiDef) { | 
 |         if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; | 
 |       } else if (sign == ZeroSign) { | 
 |         if (realAkk > static_cast<RealScalar>(0)) | 
 |           sign = PositiveSemiDef; | 
 |         else if (realAkk < static_cast<RealScalar>(0)) | 
 |           sign = NegativeSemiDef; | 
 |       } | 
 |     } | 
 |  | 
 |     return ret; | 
 |   } | 
 |  | 
 |   // Reference for the algorithm: Davis and Hager, "Multiple Rank | 
 |   // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) | 
 |   // Trivial rearrangements of their computations (Timothy E. Holy) | 
 |   // allow their algorithm to work for rank-1 updates even if the | 
 |   // original matrix is not of full rank. | 
 |   // Here only rank-1 updates are implemented, to reduce the | 
 |   // requirement for intermediate storage and improve accuracy | 
 |   template <typename MatrixType, typename WDerived> | 
 |   static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, | 
 |                             const typename MatrixType::RealScalar& sigma = 1) { | 
 |     using numext::isfinite; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |  | 
 |     const Index size = mat.rows(); | 
 |     eigen_assert(mat.cols() == size && w.size() == size); | 
 |  | 
 |     RealScalar alpha = 1; | 
 |  | 
 |     // Apply the update | 
 |     for (Index j = 0; j < size; j++) { | 
 |       // Check for termination due to an original decomposition of low-rank | 
 |       if (!(isfinite)(alpha)) break; | 
 |  | 
 |       // Update the diagonal terms | 
 |       RealScalar dj = numext::real(mat.coeff(j, j)); | 
 |       Scalar wj = w.coeff(j); | 
 |       RealScalar swj2 = sigma * numext::abs2(wj); | 
 |       RealScalar gamma = dj * alpha + swj2; | 
 |  | 
 |       mat.coeffRef(j, j) += swj2 / alpha; | 
 |       alpha += swj2 / dj; | 
 |  | 
 |       // Update the terms of L | 
 |       Index rs = size - j - 1; | 
 |       w.tail(rs) -= wj * mat.col(j).tail(rs); | 
 |       if (!numext::is_exactly_zero(gamma)) mat.col(j).tail(rs) += (sigma * numext::conj(wj) / gamma) * w.tail(rs); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
 |   static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, | 
 |                      const typename MatrixType::RealScalar& sigma = 1) { | 
 |     // Apply the permutation to the input w | 
 |     tmp = transpositions * w; | 
 |  | 
 |     return ldlt_inplace<Lower>::updateInPlace(mat, tmp, sigma); | 
 |   } | 
 | }; | 
 |  | 
 | template <> | 
 | struct ldlt_inplace<Upper> { | 
 |   template <typename MatrixType, typename TranspositionType, typename Workspace> | 
 |   static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, | 
 |                                             SignMatrix& sign) { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); | 
 |   } | 
 |  | 
 |   template <typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
 |   static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, | 
 |                                          const typename MatrixType::RealScalar& sigma = 1) { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct LDLT_Traits<MatrixType, Lower> { | 
 |   typedef const TriangularView<const MatrixType, UnitLower> MatrixL; | 
 |   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct LDLT_Traits<MatrixType, Upper> { | 
 |   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; | 
 |   typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix | 
 |  */ | 
 | template <typename MatrixType, int UpLo_> | 
 | template <typename InputType> | 
 | LDLT<MatrixType, UpLo_>& LDLT<MatrixType, UpLo_>::compute(const EigenBase<InputType>& a) { | 
 |   eigen_assert(a.rows() == a.cols()); | 
 |   const Index size = a.rows(); | 
 |  | 
 |   m_matrix = a.derived(); | 
 |  | 
 |   // Compute matrix L1 norm = max abs column sum. | 
 |   m_l1_norm = RealScalar(0); | 
 |   // TODO move this code to SelfAdjointView | 
 |   for (Index col = 0; col < size; ++col) { | 
 |     RealScalar abs_col_sum; | 
 |     if (UpLo_ == Lower) | 
 |       abs_col_sum = | 
 |           m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | 
 |     else | 
 |       abs_col_sum = | 
 |           m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); | 
 |     if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum; | 
 |   } | 
 |  | 
 |   m_transpositions.resize(size); | 
 |   m_isInitialized = false; | 
 |   m_temporary.resize(size); | 
 |   m_sign = internal::ZeroSign; | 
 |  | 
 |   m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success | 
 |                                                                                                     : NumericalIssue; | 
 |  | 
 |   m_isInitialized = true; | 
 |   return *this; | 
 | } | 
 |  | 
 | /** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. | 
 |  * \param w a vector to be incorporated into the decomposition. | 
 |  * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column | 
 |  * vectors. Optional; default value is +1. \sa setZero() | 
 |  */ | 
 | template <typename MatrixType, int UpLo_> | 
 | template <typename Derived> | 
 | LDLT<MatrixType, UpLo_>& LDLT<MatrixType, UpLo_>::rankUpdate( | 
 |     const MatrixBase<Derived>& w, const typename LDLT<MatrixType, UpLo_>::RealScalar& sigma) { | 
 |   typedef typename TranspositionType::StorageIndex IndexType; | 
 |   const Index size = w.rows(); | 
 |   if (m_isInitialized) { | 
 |     eigen_assert(m_matrix.rows() == size); | 
 |   } else { | 
 |     m_matrix.resize(size, size); | 
 |     m_matrix.setZero(); | 
 |     m_transpositions.resize(size); | 
 |     for (Index i = 0; i < size; i++) m_transpositions.coeffRef(i) = IndexType(i); | 
 |     m_temporary.resize(size); | 
 |     m_sign = sigma >= 0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; | 
 |     m_isInitialized = true; | 
 |   } | 
 |  | 
 |   internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | template <typename MatrixType_, int UpLo_> | 
 | template <typename RhsType, typename DstType> | 
 | void LDLT<MatrixType_, UpLo_>::_solve_impl(const RhsType& rhs, DstType& dst) const { | 
 |   _solve_impl_transposed<true>(rhs, dst); | 
 | } | 
 |  | 
 | template <typename MatrixType_, int UpLo_> | 
 | template <bool Conjugate, typename RhsType, typename DstType> | 
 | void LDLT<MatrixType_, UpLo_>::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const { | 
 |   // dst = P b | 
 |   dst = m_transpositions * rhs; | 
 |  | 
 |   // dst = L^-1 (P b) | 
 |   // dst = L^-*T (P b) | 
 |   matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); | 
 |  | 
 |   // dst = D^-* (L^-1 P b) | 
 |   // dst = D^-1 (L^-*T P b) | 
 |   // more precisely, use pseudo-inverse of D (see bug 241) | 
 |   using std::abs; | 
 |   const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); | 
 |   // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) | 
 |   // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: | 
 |   // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) | 
 |   // / NumTraits<RealScalar>::highest()); However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the | 
 |   // highest diagonal element is not well justified and leads to numerical issues in some cases. Moreover, Lapack's | 
 |   // xSYTRS routines use 0 for the tolerance. Using numeric_limits::min() gives us more robustness to denormals. | 
 |   RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); | 
 |   for (Index i = 0; i < vecD.size(); ++i) { | 
 |     if (abs(vecD(i)) > tolerance) | 
 |       dst.row(i) /= vecD(i); | 
 |     else | 
 |       dst.row(i).setZero(); | 
 |   } | 
 |  | 
 |   // dst = L^-* (D^-* L^-1 P b) | 
 |   // dst = L^-T (D^-1 L^-*T P b) | 
 |   matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst); | 
 |  | 
 |   // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b | 
 |   // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b | 
 |   dst = m_transpositions.transpose() * dst; | 
 | } | 
 | #endif | 
 |  | 
 | /** \internal use x = ldlt_object.solve(x); | 
 |  * | 
 |  * This is the \em in-place version of solve(). | 
 |  * | 
 |  * \param bAndX represents both the right-hand side matrix b and result x. | 
 |  * | 
 |  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
 |  * | 
 |  * This version avoids a copy when the right hand side matrix b is not | 
 |  * needed anymore. | 
 |  * | 
 |  * \sa LDLT::solve(), MatrixBase::ldlt() | 
 |  */ | 
 | template <typename MatrixType, int UpLo_> | 
 | template <typename Derived> | 
 | bool LDLT<MatrixType, UpLo_>::solveInPlace(MatrixBase<Derived>& bAndX) const { | 
 |   eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |   eigen_assert(m_matrix.rows() == bAndX.rows()); | 
 |  | 
 |   bAndX = this->solve(bAndX); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /** \returns the matrix represented by the decomposition, | 
 |  * i.e., it returns the product: P^T L D L^* P. | 
 |  * This function is provided for debug purpose. */ | 
 | template <typename MatrixType, int UpLo_> | 
 | MatrixType LDLT<MatrixType, UpLo_>::reconstructedMatrix() const { | 
 |   eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |   const Index size = m_matrix.rows(); | 
 |   MatrixType res(size, size); | 
 |  | 
 |   // P | 
 |   res.setIdentity(); | 
 |   res = transpositionsP() * res; | 
 |   // L^* P | 
 |   res = matrixU() * res; | 
 |   // D(L^*P) | 
 |   res = vectorD().real().asDiagonal() * res; | 
 |   // L(DL^*P) | 
 |   res = matrixL() * res; | 
 |   // P^T (LDL^*P) | 
 |   res = transpositionsP().transpose() * res; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** \cholesky_module | 
 |  * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
 |  * \sa MatrixBase::ldlt() | 
 |  */ | 
 | template <typename MatrixType, unsigned int UpLo> | 
 | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
 | SelfAdjointView<MatrixType, UpLo>::ldlt() const { | 
 |   return LDLT<PlainObject, UpLo>(m_matrix); | 
 | } | 
 |  | 
 | /** \cholesky_module | 
 |  * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
 |  * \sa SelfAdjointView::ldlt() | 
 |  */ | 
 | template <typename Derived> | 
 | inline const LDLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::ldlt() const { | 
 |   return LDLT<PlainObject>(derived()); | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_LDLT_H |