|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ANGLEAXIS_H | 
|  | #define EIGEN_ANGLEAXIS_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class AngleAxis | 
|  | * | 
|  | * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis | 
|  | * | 
|  | * \param Scalar_ the scalar type, i.e., the type of the coefficients. | 
|  | * | 
|  | * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. | 
|  | * | 
|  | * The following two typedefs are provided for convenience: | 
|  | * \li \c AngleAxisf for \c float | 
|  | * \li \c AngleAxisd for \c double | 
|  | * | 
|  | * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily | 
|  | * mimic Euler-angles. Here is an example: | 
|  | * \include AngleAxis_mimic_euler.cpp | 
|  | * Output: \verbinclude AngleAxis_mimic_euler.out | 
|  | * | 
|  | * \note This class is not aimed to be used to store a rotation transformation, | 
|  | * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) | 
|  | * and transformation objects. | 
|  | * | 
|  | * \sa class Quaternion, class Transform, MatrixBase::UnitX() | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template <typename Scalar_> | 
|  | struct traits<AngleAxis<Scalar_> > { | 
|  | typedef Scalar_ Scalar; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename Scalar_> | 
|  | class AngleAxis : public RotationBase<AngleAxis<Scalar_>, 3> { | 
|  | typedef RotationBase<AngleAxis<Scalar_>, 3> Base; | 
|  |  | 
|  | public: | 
|  | using Base::operator*; | 
|  |  | 
|  | enum { Dim = 3 }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef Scalar_ Scalar; | 
|  | typedef Matrix<Scalar, 3, 3> Matrix3; | 
|  | typedef Matrix<Scalar, 3, 1> Vector3; | 
|  | typedef Quaternion<Scalar> QuaternionType; | 
|  |  | 
|  | protected: | 
|  | Vector3 m_axis; | 
|  | Scalar m_angle; | 
|  |  | 
|  | public: | 
|  | /** Default constructor without initialization. */ | 
|  | EIGEN_DEVICE_FUNC AngleAxis() {} | 
|  | /** Constructs and initialize the angle-axis rotation from an \a angle in radian | 
|  | * and an \a axis which \b must \b be \b normalized. | 
|  | * | 
|  | * \warning If the \a axis vector is not normalized, then the angle-axis object | 
|  | *          represents an invalid rotation. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) | 
|  | : m_axis(axis), m_angle(angle) {} | 
|  | /** Constructs and initialize the angle-axis rotation from a quaternion \a q. | 
|  | * This function implicitly normalizes the quaternion \a q. | 
|  | */ | 
|  | template <typename QuatDerived> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { | 
|  | *this = q; | 
|  | } | 
|  | /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { | 
|  | *this = m; | 
|  | } | 
|  |  | 
|  | /** \returns the value of the rotation angle in radian */ | 
|  | EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } | 
|  | /** \returns a read-write reference to the stored angle in radian */ | 
|  | EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } | 
|  |  | 
|  | /** \returns the rotation axis */ | 
|  | EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } | 
|  | /** \returns a read-write reference to the stored rotation axis. | 
|  | * | 
|  | * \warning The rotation axis must remain a \b unit vector. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline QuaternionType operator*(const AngleAxis& other) const { | 
|  | return QuaternionType(*this) * QuaternionType(other); | 
|  | } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline QuaternionType operator*(const QuaternionType& other) const { | 
|  | return QuaternionType(*this) * other; | 
|  | } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | friend EIGEN_DEVICE_FUNC inline QuaternionType operator*(const QuaternionType& a, const AngleAxis& b) { | 
|  | return a * QuaternionType(b); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ | 
|  | EIGEN_DEVICE_FUNC AngleAxis inverse() const { return AngleAxis(-m_angle, m_axis); } | 
|  |  | 
|  | template <class QuatDerived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); | 
|  |  | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); | 
|  | EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template <typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis, AngleAxis<NewScalarType> >::type cast() | 
|  | const { | 
|  | return typename internal::cast_return_type<AngleAxis, AngleAxis<NewScalarType> >::type(*this); | 
|  | } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template <typename OtherScalarType> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) { | 
|  | m_axis = other.axis().template cast<Scalar>(); | 
|  | m_angle = Scalar(other.angle()); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = | 
|  | NumTraits<Scalar>::dummy_precision()) const { | 
|  | return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle, other.m_angle, prec); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * single precision angle-axis type */ | 
|  | typedef AngleAxis<float> AngleAxisf; | 
|  | /** \ingroup Geometry_Module | 
|  | * double precision angle-axis type */ | 
|  | typedef AngleAxis<double> AngleAxisd; | 
|  |  | 
|  | /** Set \c *this from a \b unit quaternion. | 
|  | * | 
|  | * The resulting axis is normalized, and the computed angle is in the [0,pi] range. | 
|  | * | 
|  | * This function implicitly normalizes the quaternion \a q. | 
|  | */ | 
|  | template <typename Scalar> | 
|  | template <typename QuatDerived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) { | 
|  | EIGEN_USING_STD(atan2) | 
|  | EIGEN_USING_STD(abs) | 
|  | Scalar n = q.vec().norm(); | 
|  | if (n < NumTraits<Scalar>::epsilon()) n = q.vec().stableNorm(); | 
|  |  | 
|  | if (n != Scalar(0)) { | 
|  | m_angle = Scalar(2) * atan2(n, abs(q.w())); | 
|  | if (q.w() < Scalar(0)) n = -n; | 
|  | m_axis = q.vec() / n; | 
|  | } else { | 
|  | m_angle = Scalar(0); | 
|  | m_axis << Scalar(1), Scalar(0), Scalar(0); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a 3x3 rotation matrix \a mat. | 
|  | */ | 
|  | template <typename Scalar> | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) { | 
|  | // Since a direct conversion would not be really faster, | 
|  | // let's use the robust Quaternion implementation: | 
|  | return *this = QuaternionType(mat); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Sets \c *this from a 3x3 rotation matrix. | 
|  | **/ | 
|  | template <typename Scalar> | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { | 
|  | return *this = QuaternionType(mat); | 
|  | } | 
|  |  | 
|  | /** Constructs and \returns an equivalent 3x3 rotation matrix. | 
|  | */ | 
|  | template <typename Scalar> | 
|  | typename AngleAxis<Scalar>::Matrix3 EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const { | 
|  | EIGEN_USING_STD(sin) | 
|  | EIGEN_USING_STD(cos) | 
|  | Matrix3 res; | 
|  | Vector3 sin_axis = sin(m_angle) * m_axis; | 
|  | Scalar c = cos(m_angle); | 
|  | Vector3 cos1_axis = (Scalar(1) - c) * m_axis; | 
|  |  | 
|  | Scalar tmp; | 
|  | tmp = cos1_axis.x() * m_axis.y(); | 
|  | res.coeffRef(0, 1) = tmp - sin_axis.z(); | 
|  | res.coeffRef(1, 0) = tmp + sin_axis.z(); | 
|  |  | 
|  | tmp = cos1_axis.x() * m_axis.z(); | 
|  | res.coeffRef(0, 2) = tmp + sin_axis.y(); | 
|  | res.coeffRef(2, 0) = tmp - sin_axis.y(); | 
|  |  | 
|  | tmp = cos1_axis.y() * m_axis.z(); | 
|  | res.coeffRef(1, 2) = tmp - sin_axis.x(); | 
|  | res.coeffRef(2, 1) = tmp + sin_axis.x(); | 
|  |  | 
|  | res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_ANGLEAXIS_H |