|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TRANSFORM_H | 
|  | #define EIGEN_TRANSFORM_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Transform> | 
|  | struct transform_traits { | 
|  | enum { | 
|  | Dim = Transform::Dim, | 
|  | HDim = Transform::HDim, | 
|  | Mode = Transform::Mode, | 
|  | IsProjective = (int(Mode) == int(Projective)) | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <typename TransformType, typename MatrixType, | 
|  | int Case = transform_traits<TransformType>::IsProjective                                      ? 0 | 
|  | : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 | 
|  | : 2, | 
|  | int RhsCols = MatrixType::ColsAtCompileTime> | 
|  | struct transform_right_product_impl; | 
|  |  | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim, int OtherRows = Other::RowsAtCompileTime, | 
|  | int OtherCols = Other::ColsAtCompileTime> | 
|  | struct transform_left_product_impl; | 
|  |  | 
|  | template <typename Lhs, typename Rhs, | 
|  | bool AnyProjective = transform_traits<Lhs>::IsProjective || transform_traits<Rhs>::IsProjective> | 
|  | struct transform_transform_product_impl; | 
|  |  | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim, int OtherRows = Other::RowsAtCompileTime, | 
|  | int OtherCols = Other::ColsAtCompileTime> | 
|  | struct transform_construct_from_matrix; | 
|  |  | 
|  | template <typename TransformType> | 
|  | struct transform_take_affine_part; | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Mode_, int Options_> | 
|  | struct traits<Transform<Scalar_, Dim_, Mode_, Options_> > { | 
|  | typedef Scalar_ Scalar; | 
|  | typedef Eigen::Index StorageIndex; | 
|  | typedef Dense StorageKind; | 
|  | enum { | 
|  | Dim1 = Dim_ == Dynamic ? Dim_ : Dim_ + 1, | 
|  | RowsAtCompileTime = Mode_ == Projective ? Dim1 : Dim_, | 
|  | ColsAtCompileTime = Dim1, | 
|  | MaxRowsAtCompileTime = RowsAtCompileTime, | 
|  | MaxColsAtCompileTime = ColsAtCompileTime, | 
|  | Flags = 0 | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <int Mode> | 
|  | struct transform_make_affine; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Transform | 
|  | * | 
|  | * \brief Represents an homogeneous transformation in a N dimensional space | 
|  | * | 
|  | * \tparam Scalar_ the scalar type, i.e., the type of the coefficients | 
|  | * \tparam Dim_ the dimension of the space | 
|  | * \tparam Mode_ the type of the transformation. Can be: | 
|  | *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix, | 
|  | *                         where the last row is assumed to be [0 ... 0 1]. | 
|  | *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. | 
|  | *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix | 
|  | *                             without any assumption. | 
|  | *              - #Isometry: same as #Affine with the additional assumption that | 
|  | *                           the linear part represents a rotation. This assumption is exploited | 
|  | *                           to speed up some functions such as inverse() and rotation(). | 
|  | * \tparam Options_ has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. | 
|  | *                  These Options are passed directly to the underlying matrix type. | 
|  | * | 
|  | * The homography is internally represented and stored by a matrix which | 
|  | * is available through the matrix() method. To understand the behavior of | 
|  | * this class you have to think a Transform object as its internal | 
|  | * matrix representation. The chosen convention is right multiply: | 
|  | * | 
|  | * \code v' = T * v \endcode | 
|  | * | 
|  | * Therefore, an affine transformation matrix M is shaped like this: | 
|  | * | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * linear & translation\\ | 
|  | * 0 ... 0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * Note that for a projective transformation the last row can be anything, | 
|  | * and then the interpretation of different parts might be slightly different. | 
|  | * | 
|  | * However, unlike a plain matrix, the Transform class provides many features | 
|  | * simplifying both its assembly and usage. In particular, it can be composed | 
|  | * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) | 
|  | * and can be directly used to transform implicit homogeneous vectors. All these | 
|  | * operations are handled via the operator*. For the composition of transformations, | 
|  | * its principle consists to first convert the right/left hand sides of the product | 
|  | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. | 
|  | * Of course, internally, operator* tries to perform the minimal number of operations | 
|  | * according to the nature of each terms. Likewise, when applying the transform | 
|  | * to points, the latters are automatically promoted to homogeneous vectors | 
|  | * before doing the matrix product. The conventions to homogeneous representations | 
|  | * are performed as follow: | 
|  | * | 
|  | * \b Translation t (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * I & t \\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Rotation R (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * R & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | *<!-- | 
|  | * \b Linear \b Matrix L (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * L & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Affine \b Matrix A (Dim)x(Dim+1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * A\\ | 
|  | * 0\,...\,0\,1 | 
|  | * \end{array} \right) \f$ | 
|  | *--> | 
|  | * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * S & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Column \b point v (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * v\\ | 
|  | * 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Set \b of \b column \b points V1...Vn (Dim)x(n): | 
|  | * \f$ \left( \begin{array}{ccc} | 
|  | * v_1 & ... & v_n\\ | 
|  | * 1 & ... & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * The concatenation of a Transform object with any kind of other transformation | 
|  | * always returns a Transform object. | 
|  | * | 
|  | * A little exception to the "as pure matrix product" rule is the case of the | 
|  | * transformation of non homogeneous vectors by an affine transformation. In | 
|  | * that case the last matrix row can be ignored, and the product returns non | 
|  | * homogeneous vectors. | 
|  | * | 
|  | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, | 
|  | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. | 
|  | * The solution is either to use a Dim x Dynamic matrix or explicitly request a | 
|  | * vector transformation by making the vector homogeneous: | 
|  | * \code | 
|  | * m' = T * m.colwise().homogeneous(); | 
|  | * \endcode | 
|  | * Note that there is zero overhead. | 
|  | * | 
|  | * Conversion methods from/to Qt's QMatrix and QTransform are available if the | 
|  | * preprocessor token EIGEN_QT_SUPPORT is defined. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. | 
|  | * | 
|  | * \sa class Matrix, class Quaternion | 
|  | */ | 
|  | template <typename Scalar_, int Dim_, int Mode_, int Options_> | 
|  | class Transform { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, | 
|  | Dim_ == Dynamic ? Dynamic : (Dim_ + 1) * (Dim_ + 1)) | 
|  | enum { | 
|  | Mode = Mode_, | 
|  | Options = Options_, | 
|  | Dim = Dim_,       ///< space dimension in which the transformation holds | 
|  | HDim = Dim_ + 1,  ///< size of a respective homogeneous vector | 
|  | Rows = int(Mode) == (AffineCompact) ? Dim : HDim | 
|  | }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef Scalar_ Scalar; | 
|  | typedef Eigen::Index StorageIndex; | 
|  | typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
|  | /** type of the matrix used to represent the transformation */ | 
|  | typedef typename internal::make_proper_matrix_type<Scalar, Rows, HDim, Options>::type MatrixType; | 
|  | /** constified MatrixType */ | 
|  | typedef const MatrixType ConstMatrixType; | 
|  | /** type of the matrix used to represent the linear part of the transformation */ | 
|  | typedef Matrix<Scalar, Dim, Dim, Options> LinearMatrixType; | 
|  | /** type of read/write reference to the linear part of the transformation */ | 
|  | typedef Block<MatrixType, Dim, Dim, int(Mode) == (AffineCompact) && (int(Options) & RowMajor) == 0> LinearPart; | 
|  | /** type of read reference to the linear part of the transformation */ | 
|  | typedef const Block<ConstMatrixType, Dim, Dim, int(Mode) == (AffineCompact) && (int(Options) & RowMajor) == 0> | 
|  | ConstLinearPart; | 
|  | /** type of read/write reference to the affine part of the transformation */ | 
|  | typedef std::conditional_t<int(Mode) == int(AffineCompact), MatrixType&, Block<MatrixType, Dim, HDim> > AffinePart; | 
|  | /** type of read reference to the affine part of the transformation */ | 
|  | typedef std::conditional_t<int(Mode) == int(AffineCompact), const MatrixType&, | 
|  | const Block<const MatrixType, Dim, HDim> > | 
|  | ConstAffinePart; | 
|  | /** type of a vector */ | 
|  | typedef Matrix<Scalar, Dim, 1> VectorType; | 
|  | /** type of a read/write reference to the translation part of the rotation */ | 
|  | typedef Block<MatrixType, Dim, 1, !(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart; | 
|  | /** type of a read reference to the translation part of the rotation */ | 
|  | typedef const Block<ConstMatrixType, Dim, 1, !(internal::traits<MatrixType>::Flags & RowMajorBit)> | 
|  | ConstTranslationPart; | 
|  | /** corresponding translation type */ | 
|  | typedef Translation<Scalar, Dim> TranslationType; | 
|  |  | 
|  | // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 | 
|  | enum { TransformTimeDiagonalMode = ((Mode == int(Isometry)) ? Affine : int(Mode)) }; | 
|  | /** The return type of the product between a diagonal matrix and a transform */ | 
|  | typedef Transform<Scalar, Dim, TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; | 
|  |  | 
|  | protected: | 
|  | MatrixType m_matrix; | 
|  |  | 
|  | public: | 
|  | /** Default constructor without initialization of the meaningful coefficients. | 
|  | * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */ | 
|  | EIGEN_DEVICE_FUNC inline Transform() { | 
|  | check_template_params(); | 
|  | internal::transform_make_affine<(int(Mode) == Affine || int(Mode) == Isometry) ? Affine : AffineCompact>::run( | 
|  | m_matrix); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) { | 
|  | check_template_params(); | 
|  | *this = t; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s) { | 
|  | check_template_params(); | 
|  | *this = s; | 
|  | } | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r) { | 
|  | check_template_params(); | 
|  | *this = r; | 
|  | } | 
|  |  | 
|  | typedef internal::transform_take_affine_part<Transform> take_affine_part; | 
|  |  | 
|  | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT( | 
|  | (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|  |  | 
|  | check_template_params(); | 
|  | internal::transform_construct_from_matrix<OtherDerived, Mode, Options, Dim, HDim>::run(this, other.derived()); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT( | 
|  | (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|  |  | 
|  | internal::transform_construct_from_matrix<OtherDerived, Mode, Options, Dim, HDim>::run(this, other.derived()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <int OtherOptions> | 
|  | EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar, Dim, Mode, OtherOptions>& other) { | 
|  | check_template_params(); | 
|  | // only the options change, we can directly copy the matrices | 
|  | m_matrix = other.matrix(); | 
|  | } | 
|  |  | 
|  | template <int OtherMode, int OtherOptions> | 
|  | EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) { | 
|  | check_template_params(); | 
|  | // prevent conversions as: | 
|  | // Affine | AffineCompact | Isometry = Projective | 
|  | EIGEN_STATIC_ASSERT(internal::check_implication(OtherMode == int(Projective), Mode == int(Projective)), | 
|  | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|  |  | 
|  | // prevent conversions as: | 
|  | // Isometry = Affine | AffineCompact | 
|  | EIGEN_STATIC_ASSERT( | 
|  | internal::check_implication(OtherMode == int(Affine) || OtherMode == int(AffineCompact), Mode != int(Isometry)), | 
|  | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|  |  | 
|  | enum { | 
|  | ModeIsAffineCompact = Mode == int(AffineCompact), | 
|  | OtherModeIsAffineCompact = OtherMode == int(AffineCompact) | 
|  | }; | 
|  |  | 
|  | if (EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact)) { | 
|  | // We need the block expression because the code is compiled for all | 
|  | // combinations of transformations and will trigger a compile time error | 
|  | // if one tries to assign the matrices directly | 
|  | m_matrix.template block<Dim, Dim + 1>(0, 0) = other.matrix().template block<Dim, Dim + 1>(0, 0); | 
|  | makeAffine(); | 
|  | } else if (EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact)) { | 
|  | typedef typename Transform<Scalar, Dim, OtherMode, OtherOptions>::MatrixType OtherMatrixType; | 
|  | internal::transform_construct_from_matrix<OtherMatrixType, Mode, Options, Dim, HDim>::run(this, other.matrix()); | 
|  | } else { | 
|  | // here we know that Mode == AffineCompact and OtherMode != AffineCompact. | 
|  | // if OtherMode were Projective, the static assert above would already have caught it. | 
|  | // So the only possibility is that OtherMode == Affine | 
|  | linear() = other.linear(); | 
|  | translation() = other.translation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other) { | 
|  | check_template_params(); | 
|  | other.evalTo(*this); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other) { | 
|  | other.evalTo(*this); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | #if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) | 
|  | inline Transform(const QMatrix& other); | 
|  | inline Transform& operator=(const QMatrix& other); | 
|  | inline QMatrix toQMatrix(void) const; | 
|  | #endif | 
|  | inline Transform(const QTransform& other); | 
|  | inline Transform& operator=(const QTransform& other); | 
|  | inline QTransform toQTransform(void) const; | 
|  | #endif | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { | 
|  | return int(Mode) == int(Projective) ? m_matrix.cols() : (m_matrix.cols() - 1); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
|  |  | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operator(Index,Index) const */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const { return m_matrix(row, col); } | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operator(Index,Index) */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) { return m_matrix(row, col); } | 
|  |  | 
|  | /** \returns a read-only expression of the transformation matrix */ | 
|  | EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } | 
|  | /** \returns a writable expression of the transformation matrix */ | 
|  | EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } | 
|  |  | 
|  | /** \returns a read-only expression of the linear part of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix, 0, 0); } | 
|  | /** \returns a writable expression of the linear part of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix, 0, 0); } | 
|  |  | 
|  | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } | 
|  | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } | 
|  |  | 
|  | /** \returns a read-only expression of the translation vector of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix, 0, Dim); } | 
|  | /** \returns a writable expression of the translation vector of the transformation */ | 
|  | EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix, 0, Dim); } | 
|  |  | 
|  | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. | 
|  | * | 
|  | * The right-hand-side \a other can be either: | 
|  | * \li an homogeneous vector of size Dim+1, | 
|  | * \li a set of homogeneous vectors of size Dim+1 x N, | 
|  | * \li a transformation matrix of size Dim+1 x Dim+1. | 
|  | * | 
|  | * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: | 
|  | * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), | 
|  | * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + | 
|  | * this->translation()\endcode), | 
|  | * | 
|  | * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. | 
|  | * | 
|  | * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> | 
|  | * type, or do your own cooking. | 
|  | * | 
|  | * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: | 
|  | * \code | 
|  | * Affine3f A; | 
|  | * Vector3f v1, v2; | 
|  | * v2 = A.linear() * v1; | 
|  | * \endcode | 
|  | * | 
|  | */ | 
|  | // note: this function is defined here because some compilers cannot find the respective declaration | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, | 
|  | OtherDerived>::ResultType | 
|  | operator*(const EigenBase<OtherDerived>& other) const { | 
|  | return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this, other.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the product expression of a transformation matrix \a a times a transform \a b | 
|  | * | 
|  | * The left hand side \a other can be either: | 
|  | * \li a linear transformation matrix of size Dim x Dim, | 
|  | * \li an affine transformation matrix of size Dim x Dim+1, | 
|  | * \li a general transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | friend EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived, Mode, Options, | 
|  | Dim_, Dim_ + 1>::ResultType | 
|  | operator*(const EigenBase<OtherDerived>& a, const Transform& b) { | 
|  | return internal::transform_left_product_impl<OtherDerived, Mode, Options, Dim, HDim>::run(a.derived(), b); | 
|  | } | 
|  |  | 
|  | /** \returns The product expression of a transform \a a times a diagonal matrix \a b | 
|  | * | 
|  | * The rhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|  | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|  | * mode is no isometry. In that case, the returned transform is an affinity. | 
|  | */ | 
|  | template <typename DiagonalDerived> | 
|  | EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType operator*( | 
|  | const DiagonalBase<DiagonalDerived>& b) const { | 
|  | TransformTimeDiagonalReturnType res(*this); | 
|  | res.linearExt() *= b; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \returns The product expression of a diagonal matrix \a a times a transform \a b | 
|  | * | 
|  | * The lhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|  | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|  | * mode is no isometry. In that case, the returned transform is an affinity. | 
|  | */ | 
|  | template <typename DiagonalDerived> | 
|  | EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType operator*(const DiagonalBase<DiagonalDerived>& a, | 
|  | const Transform& b) { | 
|  | TransformTimeDiagonalReturnType res; | 
|  | res.linear().noalias() = a * b.linear(); | 
|  | res.translation().noalias() = a * b.translation(); | 
|  | if (EIGEN_CONST_CONDITIONAL(Mode != int(AffineCompact))) res.matrix().row(Dim) = b.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { | 
|  | return *this = *this * other; | 
|  | } | 
|  |  | 
|  | /** Concatenates two transformations */ | 
|  | EIGEN_DEVICE_FUNC inline const Transform operator*(const Transform& other) const { | 
|  | return internal::transform_transform_product_impl<Transform, Transform>::run(*this, other); | 
|  | } | 
|  |  | 
|  | #if EIGEN_COMP_ICC | 
|  | private: | 
|  | // this intermediate structure permits to workaround a bug in ICC 11: | 
|  | //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> | 
|  | //             (const Eigen::Transform<double, 3, 2, 0> &) const" | 
|  | //  (the meaning of a name may have changed since the template declaration -- the type of the template is: | 
|  | // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, | 
|  | //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, | 
|  | //     Options> &) const") | 
|  | // | 
|  | template <int OtherMode, int OtherOptions> | 
|  | struct icc_11_workaround { | 
|  | typedef internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions> > | 
|  | ProductType; | 
|  | typedef typename ProductType::ResultType ResultType; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | /** Concatenates two different transformations */ | 
|  | template <int OtherMode, int OtherOptions> | 
|  | inline typename icc_11_workaround<OtherMode, OtherOptions>::ResultType operator*( | 
|  | const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const { | 
|  | typedef typename icc_11_workaround<OtherMode, OtherOptions>::ProductType ProductType; | 
|  | return ProductType::run(*this, other); | 
|  | } | 
|  | #else | 
|  | /** Concatenates two different transformations */ | 
|  | template <int OtherMode, int OtherOptions> | 
|  | EIGEN_DEVICE_FUNC inline | 
|  | typename internal::transform_transform_product_impl<Transform, | 
|  | Transform<Scalar, Dim, OtherMode, OtherOptions> >::ResultType | 
|  | operator*(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const { | 
|  | return internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions> >::run( | 
|  | *this, other); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \sa MatrixBase::setIdentity() */ | 
|  | EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } | 
|  |  | 
|  | /** | 
|  | * \brief Returns an identity transformation. | 
|  | * \todo In the future this function should be returning a Transform expression. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC static const Transform Identity() { return Transform(MatrixType::Identity()); } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& scale(const MatrixBase<OtherDerived>& other); | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& prescale(const MatrixBase<OtherDerived>& other); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); | 
|  | EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& translate(const MatrixBase<OtherDerived>& other); | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& pretranslate(const MatrixBase<OtherDerived>& other); | 
|  |  | 
|  | template <typename RotationType> | 
|  | EIGEN_DEVICE_FUNC inline Transform& rotate(const RotationType& rotation); | 
|  |  | 
|  | template <typename RotationType> | 
|  | EIGEN_DEVICE_FUNC inline Transform& prerotate(const RotationType& rotation); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); | 
|  | EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator=(const UniformScaling<Scalar>& t); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const { | 
|  | TransformTimeDiagonalReturnType res = *this; | 
|  | res.scale(s.factor()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator*=(const DiagonalMatrix<Scalar, Dim>& s) { | 
|  | linearExt() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived, Dim>& r); | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived, Dim>& r) { | 
|  | return rotate(r.toRotationMatrix()); | 
|  | } | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived, Dim>& r) const; | 
|  |  | 
|  | typedef std::conditional_t<int(Mode) == Isometry, ConstLinearPart, const LinearMatrixType> RotationReturnType; | 
|  | EIGEN_DEVICE_FUNC RotationReturnType rotation() const; | 
|  |  | 
|  | template <typename RotationMatrixType, typename ScalingMatrixType> | 
|  | EIGEN_DEVICE_FUNC void computeRotationScaling(RotationMatrixType* rotation, ScalingMatrixType* scaling) const; | 
|  | template <typename ScalingMatrixType, typename RotationMatrixType> | 
|  | EIGEN_DEVICE_FUNC void computeScalingRotation(ScalingMatrixType* scaling, RotationMatrixType* rotation) const; | 
|  |  | 
|  | template <typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | EIGEN_DEVICE_FUNC Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, | 
|  | const OrientationType& orientation, | 
|  | const MatrixBase<ScaleDerived>& scale); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; | 
|  |  | 
|  | /** \returns a const pointer to the column major internal matrix */ | 
|  | EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } | 
|  | /** \returns a non-const pointer to the column major internal matrix */ | 
|  | EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template <typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline | 
|  | typename internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options> >::type | 
|  | cast() const { | 
|  | return typename internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options> >::type(*this); | 
|  | } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template <typename OtherScalarType> | 
|  | EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType, Dim, Mode, Options>& other) { | 
|  | check_template_params(); | 
|  | m_matrix = other.matrix().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = | 
|  | NumTraits<Scalar>::dummy_precision()) const { | 
|  | return m_matrix.isApprox(other.m_matrix, prec); | 
|  | } | 
|  |  | 
|  | /** Sets the last row to [0 ... 0 1] | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC void makeAffine() { internal::transform_make_affine<int(Mode)>::run(m_matrix); } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, Dim> linearExt() { | 
|  | return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, Dim > (0, 0); | 
|  | } | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline const Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, Dim> linearExt() const { | 
|  | return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, Dim > (0, 0); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, 1> translationExt() { | 
|  | return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, 1 > (0, Dim); | 
|  | } | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline const Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, 1> translationExt() | 
|  | const { | 
|  | return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, 1 > (0, Dim); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_TRANSFORM_PLUGIN | 
|  | #include EIGEN_TRANSFORM_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() { | 
|  | EIGEN_STATIC_ASSERT((Options & (DontAlign | RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 2, Isometry> Isometry2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 3, Isometry> Isometry3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 2, Isometry> Isometry2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 3, Isometry> Isometry3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 2, Affine> Affine2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 3, Affine> Affine3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 2, Affine> Affine2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 3, Affine> Affine3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 2, AffineCompact> AffineCompact2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 3, AffineCompact> AffineCompact3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 2, AffineCompact> AffineCompact2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 3, AffineCompact> AffineCompact3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 2, Projective> Projective2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float, 3, Projective> Projective3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 2, Projective> Projective2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double, 3, Projective> Projective3d; | 
|  |  | 
|  | /************************** | 
|  | *** Optional QT support *** | 
|  | **************************/ | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  |  | 
|  | #if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) | 
|  | /** Initializes \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar, Dim, Mode, Options>::Transform(const QMatrix& other) { | 
|  | check_template_params(); | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=(const QMatrix& other) { | 
|  | EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(); | 
|  | else | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), 0, 0, 1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QMatrix from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * \warning this conversion might loss data if \c *this is not affine | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | QMatrix Transform<Scalar, Dim, Mode, Options>::toQMatrix(void) const { | 
|  | check_template_params(); | 
|  | EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QMatrix(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(0, 1), m_matrix.coeff(1, 1), | 
|  | m_matrix.coeff(0, 2), m_matrix.coeff(1, 2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** Initializes \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar, Dim, Mode, Options>::Transform(const QTransform& other) { | 
|  | check_template_params(); | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=(const QTransform& other) { | 
|  | check_template_params(); | 
|  | EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(); | 
|  | else | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), other.m13(), other.m23(), | 
|  | other.m33(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QTransform from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | QTransform Transform<Scalar, Dim, Mode, Options>::toQTransform(void) const { | 
|  | EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) | 
|  | return QTransform(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(0, 1), m_matrix.coeff(1, 1), | 
|  | m_matrix.coeff(0, 2), m_matrix.coeff(1, 2)); | 
|  | else | 
|  | return QTransform(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(2, 0), m_matrix.coeff(0, 1), | 
|  | m_matrix.coeff(1, 1), m_matrix.coeff(2, 1), m_matrix.coeff(0, 2), m_matrix.coeff(1, 2), | 
|  | m_matrix.coeff(2, 2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************* | 
|  | *** Procedural API *** | 
|  | *********************/ | 
|  |  | 
|  | /** Applies on the right the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa prescale() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::scale( | 
|  | const MatrixBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | linearExt().noalias() = (linearExt() * other.asDiagonal()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa prescale(Scalar) | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::scale( | 
|  | const Scalar& s) { | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | linearExt() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa scale() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prescale( | 
|  | const MatrixBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | affine().noalias() = (other.asDiagonal() * affine()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa scale(Scalar) | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prescale( | 
|  | const Scalar& s) { | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | m_matrix.template topRows<Dim>() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa pretranslate() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::translate( | 
|  | const MatrixBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) | 
|  | translationExt() += linearExt() * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa translate() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::pretranslate( | 
|  | const MatrixBase<OtherDerived>& other) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) | 
|  | if (EIGEN_CONST_CONDITIONAL(int(Mode) == int(Projective))) | 
|  | affine() += other * m_matrix.row(Dim); | 
|  | else | 
|  | translation() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * The template parameter \a RotationType is the type of the rotation which | 
|  | * must be known by internal::toRotationMatrix<>. | 
|  | * | 
|  | * Natively supported types includes: | 
|  | *   - any scalar (2D), | 
|  | *   - a Dim x Dim matrix expression, | 
|  | *   - a Quaternion (3D), | 
|  | *   - a AngleAxis (3D) | 
|  | * | 
|  | * This mechanism is easily extendable to support user types such as Euler angles, | 
|  | * or a pair of Quaternion for 4D rotations. | 
|  | * | 
|  | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename RotationType> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::rotate( | 
|  | const RotationType& rotation) { | 
|  | linearExt() *= internal::toRotationMatrix<Scalar, Dim>(rotation); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * See rotate() for further details. | 
|  | * | 
|  | * \sa rotate() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename RotationType> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prerotate( | 
|  | const RotationType& rotation) { | 
|  | m_matrix.template block<Dim, HDim>(0, 0) = | 
|  | internal::toRotationMatrix<Scalar, Dim>(rotation) * m_matrix.template block<Dim, HDim>(0, 0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa preshear() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::shear( | 
|  | const Scalar& sx, const Scalar& sy) { | 
|  | EIGEN_STATIC_ASSERT(int(Dim) == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | VectorType tmp = linear().col(0) * sy + linear().col(1); | 
|  | linear() << linear().col(0) + linear().col(1) * sx, tmp; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa shear() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::preshear( | 
|  | const Scalar& sx, const Scalar& sy) { | 
|  | EIGEN_STATIC_ASSERT(int(Dim) == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | m_matrix.template block<Dim, HDim>(0, 0) = | 
|  | LinearMatrixType({{1, sy}, {sx, 1}}) * m_matrix.template block<Dim, HDim>(0, 0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /****************************************************** | 
|  | *** Scaling, Translation and Rotation compatibility *** | 
|  | ******************************************************/ | 
|  |  | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( | 
|  | const TranslationType& t) { | 
|  | linear().setIdentity(); | 
|  | translation() = t.vector(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::operator*( | 
|  | const TranslationType& t) const { | 
|  | Transform res = *this; | 
|  | res.translate(t.vector()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( | 
|  | const UniformScaling<Scalar>& s) { | 
|  | m_matrix.setZero(); | 
|  | linear().diagonal().fill(s.factor()); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( | 
|  | const RotationBase<Derived, Dim>& r) { | 
|  | linear() = internal::toRotationMatrix<Scalar, Dim>(r); | 
|  | translation().setZero(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::operator*( | 
|  | const RotationBase<Derived, Dim>& r) const { | 
|  | Transform res = *this; | 
|  | res.rotate(r.derived()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | *** Special functions *** | 
|  | ************************/ | 
|  |  | 
|  | namespace internal { | 
|  | template <int Mode> | 
|  | struct transform_rotation_impl { | 
|  | template <typename TransformType> | 
|  | EIGEN_DEVICE_FUNC static inline const typename TransformType::LinearMatrixType run(const TransformType& t) { | 
|  | typedef typename TransformType::LinearMatrixType LinearMatrixType; | 
|  | LinearMatrixType result; | 
|  | t.computeRotationScaling(&result, (LinearMatrixType*)0); | 
|  | return result; | 
|  | } | 
|  | }; | 
|  | template <> | 
|  | struct transform_rotation_impl<Isometry> { | 
|  | template <typename TransformType> | 
|  | EIGEN_DEVICE_FUNC static inline typename TransformType::ConstLinearPart run(const TransformType& t) { | 
|  | return t.linear(); | 
|  | } | 
|  | }; | 
|  | }  // namespace internal | 
|  | /** \returns the rotation part of the transformation | 
|  | * | 
|  | * If Mode==Isometry, then this method is an alias for linear(), | 
|  | * otherwise it calls computeRotationScaling() to extract the rotation | 
|  | * through a SVD decomposition. | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), computeScalingRotation(), class SVD | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC typename Transform<Scalar, Dim, Mode, Options>::RotationReturnType | 
|  | Transform<Scalar, Dim, Mode, Options>::rotation() const { | 
|  | return internal::transform_rotation_impl<Mode>::run(*this); | 
|  | } | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeScalingRotation(), rotation(), class SVD | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename RotationMatrixType, typename ScalingMatrixType> | 
|  | EIGEN_DEVICE_FUNC void Transform<Scalar, Dim, Mode, Options>::computeRotationScaling(RotationMatrixType* rotation, | 
|  | ScalingMatrixType* scaling) const { | 
|  | // Note that JacobiSVD is faster than BDCSVD for small matrices. | 
|  | JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear()); | 
|  |  | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) | 
|  | ? Scalar(-1) | 
|  | : Scalar(1);  // so x has absolute value 1 | 
|  | VectorType sv(svd.singularValues()); | 
|  | sv.coeffRef(Dim - 1) *= x; | 
|  | if (scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); | 
|  | if (rotation) { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(Dim - 1) *= x; | 
|  | *rotation = m * svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), rotation(), class SVD | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename ScalingMatrixType, typename RotationMatrixType> | 
|  | EIGEN_DEVICE_FUNC void Transform<Scalar, Dim, Mode, Options>::computeScalingRotation( | 
|  | ScalingMatrixType* scaling, RotationMatrixType* rotation) const { | 
|  | // Note that JacobiSVD is faster than BDCSVD for small matrices. | 
|  | JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear()); | 
|  |  | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) | 
|  | ? Scalar(-1) | 
|  | : Scalar(1);  // so x has absolute value 1 | 
|  | VectorType sv(svd.singularValues()); | 
|  | sv.coeffRef(Dim - 1) *= x; | 
|  | if (scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); | 
|  | if (rotation) { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(Dim - 1) *= x; | 
|  | *rotation = m * svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Convenient method to set \c *this from a position, orientation and scale | 
|  | * of a 3D object. | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | template <typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& | 
|  | Transform<Scalar, Dim, Mode, Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, | 
|  | const OrientationType& orientation, | 
|  | const MatrixBase<ScaleDerived>& scale) { | 
|  | linear() = internal::toRotationMatrix<Scalar, Dim>(orientation); | 
|  | linear() *= scale.asDiagonal(); | 
|  | translation() = position; | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <int Mode> | 
|  | struct transform_make_affine { | 
|  | template <typename MatrixType> | 
|  | EIGEN_DEVICE_FUNC static void run(MatrixType& mat) { | 
|  | static const int Dim = MatrixType::ColsAtCompileTime - 1; | 
|  | mat.template block<1, Dim>(Dim, 0).setZero(); | 
|  | mat.coeffRef(Dim, Dim) = typename MatrixType::Scalar(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct transform_make_affine<AffineCompact> { | 
|  | template <typename MatrixType> | 
|  | EIGEN_DEVICE_FUNC static void run(MatrixType&) {} | 
|  | }; | 
|  |  | 
|  | // selector needed to avoid taking the inverse of a 3x4 matrix | 
|  | template <typename TransformType, int Mode = TransformType::Mode> | 
|  | struct projective_transform_inverse { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) {} | 
|  | }; | 
|  |  | 
|  | template <typename TransformType> | 
|  | struct projective_transform_inverse<TransformType, Projective> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) { | 
|  | res.matrix() = m.matrix().inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** | 
|  | * | 
|  | * \returns the inverse transformation according to some given knowledge | 
|  | * on \c *this. | 
|  | * | 
|  | * \param hint allows to optimize the inversion process when the transformation | 
|  | * is known to be not a general transformation (optional). The possible values are: | 
|  | *  - #Projective if the transformation is not necessarily affine, i.e., if the | 
|  | *    last row is not guaranteed to be [0 ... 0 1] | 
|  | *  - #Affine if the last row can be assumed to be [0 ... 0 1] | 
|  | *  - #Isometry if the transformation is only a concatenations of translations | 
|  | *    and rotations. | 
|  | *  The default is the template class parameter \c Mode. | 
|  | * | 
|  | * \warning unless \a traits is always set to NoShear or NoScaling, this function | 
|  | * requires the generic inverse method of MatrixBase defined in the LU module. If | 
|  | * you forget to include this module, then you will get hard to debug linking errors. | 
|  | * | 
|  | * \sa MatrixBase::inverse() | 
|  | */ | 
|  | template <typename Scalar, int Dim, int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::inverse( | 
|  | TransformTraits hint) const { | 
|  | Transform res; | 
|  | if (hint == Projective) { | 
|  | internal::projective_transform_inverse<Transform>::run(*this, res); | 
|  | } else { | 
|  | if (hint == Isometry) { | 
|  | res.matrix().template topLeftCorner<Dim, Dim>() = linear().transpose(); | 
|  | } else if (hint & Affine) { | 
|  | res.matrix().template topLeftCorner<Dim, Dim>() = linear().inverse(); | 
|  | } else { | 
|  | eigen_assert(false && "Invalid transform traits in Transform::Inverse"); | 
|  | } | 
|  | // translation and remaining parts | 
|  | res.matrix().template topRightCorner<Dim, 1>() = -res.matrix().template topLeftCorner<Dim, Dim>() * translation(); | 
|  | res.makeAffine();  // we do need this, because in the beginning res is uninitialized | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of take affine part            *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template <typename TransformType> | 
|  | struct transform_take_affine_part { | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename TransformType::AffinePart AffinePart; | 
|  | typedef typename TransformType::ConstAffinePart ConstAffinePart; | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AffinePart run(MatrixType& m) { | 
|  | return m.template block<TransformType::Dim, TransformType::HDim>(0, 0); | 
|  | } | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ConstAffinePart run(const MatrixType& m) { | 
|  | return m.template block<TransformType::Dim, TransformType::HDim>(0, 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int Dim, int Options> | 
|  | struct transform_take_affine_part<Transform<Scalar, Dim, AffineCompact, Options> > { | 
|  | typedef typename Transform<Scalar, Dim, AffineCompact, Options>::MatrixType MatrixType; | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixType& run(MatrixType& m) { return m; } | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixType& run(const MatrixType& m) { return m; } | 
|  | }; | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of construct from matrix       *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, Dim, Dim> { | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( | 
|  | Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { | 
|  | transform->linear() = other; | 
|  | transform->translation().setZero(); | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, Dim, HDim> { | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( | 
|  | Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { | 
|  | transform->affine() = other; | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, HDim, HDim> { | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( | 
|  | Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { | 
|  | transform->matrix() = other; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, AffineCompact, Options, Dim, HDim, HDim, HDim> { | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( | 
|  | Transform<typename Other::Scalar, Dim, AffineCompact, Options>* transform, const Other& other) { | 
|  | transform->matrix() = other.template block<Dim, HDim>(0, 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | ***   Specializations of operator* with rhs EigenBase   *** | 
|  | **********************************************************/ | 
|  |  | 
|  | template <int LhsMode, int RhsMode> | 
|  | struct transform_product_result { | 
|  | enum { | 
|  | Mode = (LhsMode == (int)Projective || RhsMode == (int)Projective)         ? Projective | 
|  | : (LhsMode == (int)Affine || RhsMode == (int)Affine)               ? Affine | 
|  | : (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact) ? AffineCompact | 
|  | : (LhsMode == (int)Isometry || RhsMode == (int)Isometry)           ? Isometry | 
|  | : Projective | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <typename TransformType, typename MatrixType, int RhsCols> | 
|  | struct transform_right_product_impl<TransformType, MatrixType, 0, RhsCols> { | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { | 
|  | return T.matrix() * other; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename TransformType, typename MatrixType, int RhsCols> | 
|  | struct transform_right_product_impl<TransformType, MatrixType, 1, RhsCols> { | 
|  | enum { | 
|  | Dim = TransformType::Dim, | 
|  | HDim = TransformType::HDim, | 
|  | OtherRows = MatrixType::RowsAtCompileTime, | 
|  | OtherCols = MatrixType::ColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { | 
|  | EIGEN_STATIC_ASSERT(OtherRows == HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|  |  | 
|  | typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime) == Dim> TopLeftLhs; | 
|  |  | 
|  | ResultType res(other.rows(), other.cols()); | 
|  | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; | 
|  | res.row(OtherRows - 1) = other.row(OtherRows - 1); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename TransformType, typename MatrixType, int RhsCols> | 
|  | struct transform_right_product_impl<TransformType, MatrixType, 2, RhsCols> { | 
|  | enum { | 
|  | Dim = TransformType::Dim, | 
|  | HDim = TransformType::HDim, | 
|  | OtherRows = MatrixType::RowsAtCompileTime, | 
|  | OtherCols = MatrixType::ColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { | 
|  | EIGEN_STATIC_ASSERT(OtherRows == Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|  |  | 
|  | typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; | 
|  | ResultType res( | 
|  | Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(), 1, other.cols())); | 
|  | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename TransformType, typename MatrixType> | 
|  | struct transform_right_product_impl<TransformType, MatrixType, 2, 1>  // rhs is a vector of size Dim | 
|  | { | 
|  | typedef typename TransformType::MatrixType TransformMatrix; | 
|  | enum { | 
|  | Dim = TransformType::Dim, | 
|  | HDim = TransformType::HDim, | 
|  | OtherRows = MatrixType::RowsAtCompileTime, | 
|  | WorkingRows = plain_enum_min(TransformMatrix::RowsAtCompileTime, HDim) | 
|  | }; | 
|  |  | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { | 
|  | EIGEN_STATIC_ASSERT(OtherRows == Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|  |  | 
|  | Matrix<typename ResultType::Scalar, Dim + 1, 1> rhs; | 
|  | rhs.template head<Dim>() = other; | 
|  | rhs[Dim] = typename ResultType::Scalar(1); | 
|  | Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs); | 
|  | return res.template head<Dim>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | ***   Specializations of operator* with lhs EigenBase   *** | 
|  | **********************************************************/ | 
|  |  | 
|  | // generic HDim x HDim matrix * T => Projective | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, HDim, HDim> { | 
|  | typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar, Dim, Projective, Options> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { | 
|  | return ResultType(other * tr.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // generic HDim x HDim matrix * AffineCompact => Projective | 
|  | template <typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other, AffineCompact, Options, Dim, HDim, HDim, HDim> { | 
|  | typedef Transform<typename Other::Scalar, Dim, AffineCompact, Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar, Dim, Projective, Options> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<HDim, Dim>(0, 0) * tr.matrix(); | 
|  | res.matrix().col(Dim) += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * T | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, Dim, HDim> { | 
|  | typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { | 
|  | ResultType res; | 
|  | res.affine().noalias() = other * tr.matrix(); | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * AffineCompact | 
|  | template <typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other, AffineCompact, Options, Dim, HDim, Dim, HDim> { | 
|  | typedef Transform<typename Other::Scalar, Dim, AffineCompact, Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<Dim, Dim>(0, 0) * tr.matrix(); | 
|  | res.translation() += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // linear matrix * T | 
|  | template <typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, Dim, Dim> { | 
|  | typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { | 
|  | TransformType res; | 
|  | if (Mode != int(AffineCompact)) res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | res.matrix().template topRows<Dim>().noalias() = other * tr.matrix().template topRows<Dim>(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | *** Specializations of operator* with another Transform *** | 
|  | **********************************************************/ | 
|  |  | 
|  | template <typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar, Dim, LhsMode, LhsOptions>, | 
|  | Transform<Scalar, Dim, RhsMode, RhsOptions>, false> { | 
|  | enum { ResultMode = transform_product_result<LhsMode, RhsMode>::Mode }; | 
|  | typedef Transform<Scalar, Dim, LhsMode, LhsOptions> Lhs; | 
|  | typedef Transform<Scalar, Dim, RhsMode, RhsOptions> Rhs; | 
|  | typedef Transform<Scalar, Dim, ResultMode, LhsOptions> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { | 
|  | ResultType res; | 
|  | res.linear() = lhs.linear() * rhs.linear(); | 
|  | res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); | 
|  | res.makeAffine(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar, Dim, LhsMode, LhsOptions>, | 
|  | Transform<Scalar, Dim, RhsMode, RhsOptions>, true> { | 
|  | typedef Transform<Scalar, Dim, LhsMode, LhsOptions> Lhs; | 
|  | typedef Transform<Scalar, Dim, RhsMode, RhsOptions> Rhs; | 
|  | typedef Transform<Scalar, Dim, Projective> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { | 
|  | return ResultType(lhs.matrix() * rhs.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar, Dim, AffineCompact, LhsOptions>, | 
|  | Transform<Scalar, Dim, Projective, RhsOptions>, true> { | 
|  | typedef Transform<Scalar, Dim, AffineCompact, LhsOptions> Lhs; | 
|  | typedef Transform<Scalar, Dim, Projective, RhsOptions> Rhs; | 
|  | typedef Transform<Scalar, Dim, Projective> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { | 
|  | ResultType res; | 
|  | res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); | 
|  | res.matrix().row(Dim) = rhs.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar, Dim, Projective, LhsOptions>, | 
|  | Transform<Scalar, Dim, AffineCompact, RhsOptions>, true> { | 
|  | typedef Transform<Scalar, Dim, Projective, LhsOptions> Lhs; | 
|  | typedef Transform<Scalar, Dim, AffineCompact, RhsOptions> Rhs; | 
|  | typedef Transform<Scalar, Dim, Projective> ResultType; | 
|  | static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { | 
|  | ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); | 
|  | res.matrix().col(Dim) += lhs.matrix().col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_TRANSFORM_H |