|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_KLUSUPPORT_H | 
|  | #define EIGEN_KLUSUPPORT_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /* TODO extract L, extract U, compute det, etc... */ | 
|  |  | 
|  | /** \ingroup KLUSupport_Module | 
|  | * \brief A sparse LU factorization and solver based on KLU | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a LU factorization | 
|  | * using the KLU library. The sparse matrix A must be squared and full rank. | 
|  | * The vectors or matrices X and B can be either dense or sparse. | 
|  | * | 
|  | * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
|  | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU | 
|  | */ | 
|  |  | 
|  | inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], | 
|  | klu_common *Common, double) { | 
|  | return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, | 
|  | Common); | 
|  | } | 
|  |  | 
|  | inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], | 
|  | klu_common *Common, std::complex<double>) { | 
|  | return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), | 
|  | &numext::real_ref(B[0]), Common); | 
|  | } | 
|  |  | 
|  | inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], | 
|  | klu_common *Common, double) { | 
|  | return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, | 
|  | Common); | 
|  | } | 
|  |  | 
|  | inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], | 
|  | klu_common *Common, std::complex<double>) { | 
|  | return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), | 
|  | &numext::real_ref(B[0]), 0, Common); | 
|  | } | 
|  |  | 
|  | inline klu_numeric *klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double) { | 
|  | return klu_factor(Ap, Ai, Ax, Symbolic, Common); | 
|  | } | 
|  |  | 
|  | inline klu_numeric *klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, | 
|  | klu_common *Common, std::complex<double>) { | 
|  | return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType_> | 
|  | class KLU : public SparseSolverBase<KLU<MatrixType_> > { | 
|  | protected: | 
|  | typedef SparseSolverBase<KLU<MatrixType_> > Base; | 
|  | using Base::m_isInitialized; | 
|  |  | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<Scalar, Dynamic, 1> Vector; | 
|  | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
|  | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
|  | typedef SparseMatrix<Scalar> LUMatrixType; | 
|  | typedef SparseMatrix<Scalar, ColMajor, int> KLUMatrixType; | 
|  | typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef; | 
|  | enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
|  |  | 
|  | public: | 
|  | KLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); } | 
|  |  | 
|  | template <typename InputMatrixType> | 
|  | explicit KLU(const InputMatrixType &matrix) : mp_matrix(matrix) { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~KLU() { | 
|  | if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | 
|  | if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | 
|  | } | 
|  |  | 
|  | EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); } | 
|  | EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  | #if 0  // not implemented yet | 
|  | inline const LUMatrixType& matrixL() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_l; | 
|  | } | 
|  |  | 
|  | inline const LUMatrixType& matrixU() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_u; | 
|  | } | 
|  |  | 
|  | inline const IntColVectorType& permutationP() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | inline const IntRowVectorType& permutationQ() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_q; | 
|  | } | 
|  | #endif | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix | 
|  | *  Note that the matrix should be column-major, and in compressed format for best performance. | 
|  | *  \sa SparseMatrix::makeCompressed(). | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void compute(const InputMatrixType &matrix) { | 
|  | if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | 
|  | if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | 
|  | grab(matrix.derived()); | 
|  | analyzePattern_impl(); | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize(), compute() | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void analyzePattern(const InputMatrixType &matrix) { | 
|  | if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | 
|  | if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | analyzePattern_impl(); | 
|  | } | 
|  |  | 
|  | /** Provides access to the control settings array used by KLU. | 
|  | * | 
|  | * See KLU documentation for details. | 
|  | */ | 
|  | inline const klu_common &kluCommon() const { return m_common; } | 
|  |  | 
|  | /** Provides access to the control settings array used by UmfPack. | 
|  | * | 
|  | * If this array contains NaN's, the default values are used. | 
|  | * | 
|  | * See KLU documentation for details. | 
|  | */ | 
|  | inline klu_common &kluCommon() { return m_common; } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. | 
|  | * | 
|  | * \sa analyzePattern(), compute() | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void factorize(const InputMatrixType &matrix) { | 
|  | eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()"); | 
|  | if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename BDerived, typename XDerived> | 
|  | bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | 
|  |  | 
|  | #if 0  // not implemented yet | 
|  | Scalar determinant() const; | 
|  |  | 
|  | void extractData() const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | void init() { | 
|  | m_info = InvalidInput; | 
|  | m_isInitialized = false; | 
|  | m_numeric = 0; | 
|  | m_symbolic = 0; | 
|  | m_extractedDataAreDirty = true; | 
|  |  | 
|  | klu_defaults(&m_common); | 
|  | } | 
|  |  | 
|  | void analyzePattern_impl() { | 
|  | m_info = InvalidInput; | 
|  | m_analysisIsOk = false; | 
|  | m_factorizationIsOk = false; | 
|  | m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()), | 
|  | const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), | 
|  | const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), &m_common); | 
|  | if (m_symbolic) { | 
|  | m_isInitialized = true; | 
|  | m_info = Success; | 
|  | m_analysisIsOk = true; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void factorize_impl() { | 
|  | m_numeric = klu_factor(const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), | 
|  | const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), | 
|  | const_cast<Scalar *>(mp_matrix.valuePtr()), m_symbolic, &m_common, Scalar()); | 
|  |  | 
|  | m_info = m_numeric ? Success : NumericalIssue; | 
|  | m_factorizationIsOk = m_numeric ? 1 : 0; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | template <typename MatrixDerived> | 
|  | void grab(const EigenBase<MatrixDerived> &A) { | 
|  | internal::destroy_at(&mp_matrix); | 
|  | internal::construct_at(&mp_matrix, A.derived()); | 
|  | } | 
|  |  | 
|  | void grab(const KLUMatrixRef &A) { | 
|  | if (&(A.derived()) != &mp_matrix) { | 
|  | internal::destroy_at(&mp_matrix); | 
|  | internal::construct_at(&mp_matrix, A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // cached data to reduce reallocation, etc. | 
|  | #if 0  // not implemented yet | 
|  | mutable LUMatrixType m_l; | 
|  | mutable LUMatrixType m_u; | 
|  | mutable IntColVectorType m_p; | 
|  | mutable IntRowVectorType m_q; | 
|  | #endif | 
|  |  | 
|  | KLUMatrixType m_dummy; | 
|  | KLUMatrixRef mp_matrix; | 
|  |  | 
|  | klu_numeric *m_numeric; | 
|  | klu_symbolic *m_symbolic; | 
|  | klu_common m_common; | 
|  | mutable ComputationInfo m_info; | 
|  | int m_factorizationIsOk; | 
|  | int m_analysisIsOk; | 
|  | mutable bool m_extractedDataAreDirty; | 
|  |  | 
|  | private: | 
|  | KLU(const KLU &) {} | 
|  | }; | 
|  |  | 
|  | #if 0  // not implemented yet | 
|  | template<typename MatrixType> | 
|  | void KLU<MatrixType>::extractData() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) | 
|  | { | 
|  | eigen_assert(false && "KLU: extractData Not Yet Implemented"); | 
|  |  | 
|  | // get size of the data | 
|  | int lnz, unz, rows, cols, nz_udiag; | 
|  | umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
|  |  | 
|  | // allocate data | 
|  | m_l.resize(rows,(std::min)(rows,cols)); | 
|  | m_l.resizeNonZeros(lnz); | 
|  |  | 
|  | m_u.resize((std::min)(rows,cols),cols); | 
|  | m_u.resizeNonZeros(unz); | 
|  |  | 
|  | m_p.resize(rows); | 
|  | m_q.resize(cols); | 
|  |  | 
|  | // extract | 
|  | umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), | 
|  | m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), | 
|  | m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
|  |  | 
|  | m_extractedDataAreDirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const | 
|  | { | 
|  | eigen_assert(false && "KLU: extractData Not Yet Implemented"); | 
|  | return Scalar(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template <typename MatrixType> | 
|  | template <typename BDerived, typename XDerived> | 
|  | bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { | 
|  | Index rhsCols = b.cols(); | 
|  | EIGEN_STATIC_ASSERT((XDerived::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
|  | eigen_assert(m_factorizationIsOk && | 
|  | "The decomposition is not in a valid state for solving, you must first call either compute() or " | 
|  | "analyzePattern()/factorize()"); | 
|  |  | 
|  | x = b; | 
|  | int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), | 
|  | const_cast<klu_common *>(&m_common), Scalar()); | 
|  |  | 
|  | m_info = info != 0 ? Success : NumericalIssue; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_KLUSUPPORT_H |