|  |  | 
|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ORDERING_H | 
|  | #define EIGEN_ORDERING_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | #include "Eigen_Colamd.h" | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal | 
|  | * \ingroup OrderingMethods_Module | 
|  | * \param[in] A the input non-symmetric matrix | 
|  | * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. | 
|  | * FIXME: The values should not be considered here | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) { | 
|  | MatrixType C; | 
|  | C = A.transpose();  // NOTE: Could be  costly | 
|  | for (int i = 0; i < C.rows(); i++) { | 
|  | for (typename MatrixType::InnerIterator it(C, i); it; ++it) it.valueRef() = typename MatrixType::Scalar(0); | 
|  | } | 
|  | symmat = C + A; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | /** \ingroup OrderingMethods_Module | 
|  | * \class AMDOrdering | 
|  | * | 
|  | * Functor computing the \em approximate \em minimum \em degree ordering | 
|  | * If the matrix is not structurally symmetric, an ordering of A^T+A is computed | 
|  | * \tparam  StorageIndex The type of indices of the matrix | 
|  | * \sa COLAMDOrdering | 
|  | */ | 
|  | template <typename StorageIndex> | 
|  | class AMDOrdering { | 
|  | public: | 
|  | typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
|  |  | 
|  | /** Compute the permutation vector from a sparse matrix | 
|  | * This routine is much faster if the input matrix is column-major | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | void operator()(const MatrixType& mat, PermutationType& perm) { | 
|  | // Compute the symmetric pattern | 
|  | SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm; | 
|  | internal::ordering_helper_at_plus_a(mat, symm); | 
|  |  | 
|  | // Call the AMD routine | 
|  | // m_mat.prune(keep_diag()); | 
|  | internal::minimum_degree_ordering(symm, perm); | 
|  | } | 
|  |  | 
|  | /** Compute the permutation with a selfadjoint matrix */ | 
|  | template <typename SrcType, unsigned int SrcUpLo> | 
|  | void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) { | 
|  | SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; | 
|  | C = mat; | 
|  |  | 
|  | // Call the AMD routine | 
|  | // m_mat.prune(keep_diag()); //Remove the diagonal elements | 
|  | internal::minimum_degree_ordering(C, perm); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup OrderingMethods_Module | 
|  | * \class NaturalOrdering | 
|  | * | 
|  | * Functor computing the natural ordering (identity) | 
|  | * | 
|  | * \note Returns an empty permutation matrix | 
|  | * \tparam  StorageIndex The type of indices of the matrix | 
|  | */ | 
|  | template <typename StorageIndex> | 
|  | class NaturalOrdering { | 
|  | public: | 
|  | typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
|  |  | 
|  | /** Compute the permutation vector from a column-major sparse matrix */ | 
|  | template <typename MatrixType> | 
|  | void operator()(const MatrixType& /*mat*/, PermutationType& perm) { | 
|  | perm.resize(0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup OrderingMethods_Module | 
|  | * \class COLAMDOrdering | 
|  | * | 
|  | * \tparam  StorageIndex The type of indices of the matrix | 
|  | * | 
|  | * Functor computing the \em column \em approximate \em minimum \em degree ordering | 
|  | * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). | 
|  | */ | 
|  | template <typename StorageIndex> | 
|  | class COLAMDOrdering { | 
|  | public: | 
|  | typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
|  | typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; | 
|  |  | 
|  | /** Compute the permutation vector \a perm form the sparse matrix \a mat | 
|  | * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | void operator()(const MatrixType& mat, PermutationType& perm) { | 
|  | eigen_assert(mat.isCompressed() && | 
|  | "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it " | 
|  | "to COLAMDOrdering"); | 
|  |  | 
|  | StorageIndex m = StorageIndex(mat.rows()); | 
|  | StorageIndex n = StorageIndex(mat.cols()); | 
|  | StorageIndex nnz = StorageIndex(mat.nonZeros()); | 
|  | // Get the recommended value of Alen to be used by colamd | 
|  | StorageIndex Alen = internal::Colamd::recommended(nnz, m, n); | 
|  | // Set the default parameters | 
|  | double knobs[internal::Colamd::NKnobs]; | 
|  | StorageIndex stats[internal::Colamd::NStats]; | 
|  | internal::Colamd::set_defaults(knobs); | 
|  |  | 
|  | IndexVector p(n + 1), A(Alen); | 
|  | for (StorageIndex i = 0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; | 
|  | for (StorageIndex i = 0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; | 
|  | // Call Colamd routine to compute the ordering | 
|  | StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats); | 
|  | EIGEN_UNUSED_VARIABLE(info); | 
|  | eigen_assert(info && "COLAMD failed "); | 
|  |  | 
|  | perm.resize(n); | 
|  | for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif |