| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_UMFPACKSUPPORT_H | 
 | #define EIGEN_UMFPACKSUPPORT_H | 
 |  | 
 | // for compatibility with super old version of umfpack, | 
 | // not sure this is really needed, but this is harmless. | 
 | #ifndef SuiteSparse_long | 
 | #ifdef UF_long | 
 | #define SuiteSparse_long UF_long | 
 | #else | 
 | #error neither SuiteSparse_long nor UF_long are defined | 
 | #endif | 
 | #endif | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /* TODO extract L, extract U, compute det, etc... */ | 
 |  | 
 | // generic double/complex<double> wrapper functions: | 
 |  | 
 | // Defaults | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int) { umfpack_di_defaults(control); } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, int) { | 
 |   umfpack_zi_defaults(control); | 
 | } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long) { | 
 |   umfpack_dl_defaults(control); | 
 | } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) { | 
 |   umfpack_zl_defaults(control); | 
 | } | 
 |  | 
 | // Report info | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int) { | 
 |   umfpack_di_report_info(control, info); | 
 | } | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, int) { | 
 |   umfpack_zi_report_info(control, info); | 
 | } | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long) { | 
 |   umfpack_dl_report_info(control, info); | 
 | } | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, | 
 |                                 SuiteSparse_long) { | 
 |   umfpack_zl_report_info(control, info); | 
 | } | 
 |  | 
 | // Report status | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int) { | 
 |   umfpack_di_report_status(control, status); | 
 | } | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, int) { | 
 |   umfpack_zi_report_status(control, status); | 
 | } | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long) { | 
 |   umfpack_dl_report_status(control, status); | 
 | } | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, SuiteSparse_long) { | 
 |   umfpack_zl_report_status(control, status); | 
 | } | 
 |  | 
 | // report control | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int) { umfpack_di_report_control(control); } | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, int) { | 
 |   umfpack_zi_report_control(control); | 
 | } | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long) { | 
 |   umfpack_dl_report_control(control); | 
 | } | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) { | 
 |   umfpack_zl_report_control(control); | 
 | } | 
 |  | 
 | // Free numeric | 
 | inline void umfpack_free_numeric(void **Numeric, double, int) { | 
 |   umfpack_di_free_numeric(Numeric); | 
 |   *Numeric = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, int) { | 
 |   umfpack_zi_free_numeric(Numeric); | 
 |   *Numeric = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long) { | 
 |   umfpack_dl_free_numeric(Numeric); | 
 |   *Numeric = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, SuiteSparse_long) { | 
 |   umfpack_zl_free_numeric(Numeric); | 
 |   *Numeric = 0; | 
 | } | 
 |  | 
 | // Free symbolic | 
 | inline void umfpack_free_symbolic(void **Symbolic, double, int) { | 
 |   umfpack_di_free_symbolic(Symbolic); | 
 |   *Symbolic = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, int) { | 
 |   umfpack_zi_free_symbolic(Symbolic); | 
 |   *Symbolic = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long) { | 
 |   umfpack_dl_free_symbolic(Symbolic); | 
 |   *Symbolic = 0; | 
 | } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, SuiteSparse_long) { | 
 |   umfpack_zl_free_symbolic(Symbolic); | 
 |   *Symbolic = 0; | 
 | } | 
 |  | 
 | // Symbolic | 
 | inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, | 
 |                             const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_di_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info); | 
 | } | 
 |  | 
 | inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
 |                             void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zi_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info); | 
 | } | 
 | inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], | 
 |                                          const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, | 
 |                                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_dl_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], | 
 |                                          const SuiteSparse_long Ai[], const std::complex<double> Ax[], void **Symbolic, | 
 |                                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zl_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info); | 
 | } | 
 |  | 
 | // Numeric | 
 | inline int umfpack_numeric(const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, | 
 |                            const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_di_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info); | 
 | } | 
 |  | 
 | inline int umfpack_numeric(const int Ap[], const int Ai[], const std::complex<double> Ax[], void *Symbolic, | 
 |                            void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zi_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info); | 
 | } | 
 | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], | 
 |                                         void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], | 
 |                                         double Info[UMFPACK_INFO]) { | 
 |   return umfpack_dl_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
 |                                         const std::complex<double> Ax[], void *Symbolic, void **Numeric, | 
 |                                         const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zl_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info); | 
 | } | 
 |  | 
 | // solve | 
 | inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], | 
 |                          void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_di_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info); | 
 | } | 
 |  | 
 | inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
 |                          std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
 |                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zi_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]), | 
 |                           0, Numeric, Control, Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
 |                                       const double Ax[], double X[], const double B[], void *Numeric, | 
 |                                       const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_dl_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
 |                                       const std::complex<double> Ax[], std::complex<double> X[], | 
 |                                       const std::complex<double> B[], void *Numeric, | 
 |                                       const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
 |   return umfpack_zl_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]), | 
 |                           0, Numeric, Control, Info); | 
 | } | 
 |  | 
 | // Get Lunz | 
 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) { | 
 |   return umfpack_di_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
 | } | 
 |  | 
 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, | 
 |                             std::complex<double>) { | 
 |   return umfpack_zi_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, | 
 |                                          SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double) { | 
 |   return umfpack_dl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, | 
 |                                          SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, | 
 |                                          std::complex<double>) { | 
 |   return umfpack_zl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
 | } | 
 |  | 
 | // Get Numeric | 
 | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], | 
 |                                double Dx[], int *do_recip, double Rs[], void *Numeric) { | 
 |   return umfpack_di_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric); | 
 | } | 
 |  | 
 | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], | 
 |                                std::complex<double> Ux[], int P[], int Q[], std::complex<double> Dx[], int *do_recip, | 
 |                                double Rs[], void *Numeric) { | 
 |   double &lx0_real = numext::real_ref(Lx[0]); | 
 |   double &ux0_real = numext::real_ref(Ux[0]); | 
 |   double &dx0_real = numext::real_ref(Dx[0]); | 
 |   return umfpack_zi_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0, | 
 |                                 0, do_recip, Rs, Numeric); | 
 | } | 
 | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], | 
 |                                             SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], | 
 |                                             SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], | 
 |                                             SuiteSparse_long *do_recip, double Rs[], void *Numeric) { | 
 |   return umfpack_dl_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex<double> Lx[], | 
 |                                             SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex<double> Ux[], | 
 |                                             SuiteSparse_long P[], SuiteSparse_long Q[], std::complex<double> Dx[], | 
 |                                             SuiteSparse_long *do_recip, double Rs[], void *Numeric) { | 
 |   double &lx0_real = numext::real_ref(Lx[0]); | 
 |   double &ux0_real = numext::real_ref(Ux[0]); | 
 |   double &dx0_real = numext::real_ref(Dx[0]); | 
 |   return umfpack_zl_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0, | 
 |                                 0, do_recip, Rs, Numeric); | 
 | } | 
 |  | 
 | // Get Determinant | 
 | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int) { | 
 |   return umfpack_di_get_determinant(Mx, Ex, NumericHandle, User_Info); | 
 | } | 
 |  | 
 | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, | 
 |                                    double User_Info[UMFPACK_INFO], int) { | 
 |   double &mx_real = numext::real_ref(*Mx); | 
 |   return umfpack_zi_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, | 
 |                                                 double User_Info[UMFPACK_INFO], SuiteSparse_long) { | 
 |   return umfpack_dl_get_determinant(Mx, Ex, NumericHandle, User_Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, | 
 |                                                 double User_Info[UMFPACK_INFO], SuiteSparse_long) { | 
 |   double &mx_real = numext::real_ref(*Mx); | 
 |   return umfpack_zl_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info); | 
 | } | 
 |  | 
 | /** \ingroup UmfPackSupport_Module | 
 |  * \brief A sparse LU factorization and solver based on UmfPack | 
 |  * | 
 |  * This class allows to solve for A.X = B sparse linear problems via a LU factorization | 
 |  * using the UmfPack library. The sparse matrix A must be squared and full rank. | 
 |  * The vectors or matrices X and B can be either dense or sparse. | 
 |  * | 
 |  * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
 |  * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
 |  * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |  */ | 
 | template <typename MatrixType_> | 
 | class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> > { | 
 |  protected: | 
 |   typedef SparseSolverBase<UmfPackLU<MatrixType_> > Base; | 
 |   using Base::m_isInitialized; | 
 |  | 
 |  public: | 
 |   using Base::_solve_impl; | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef Matrix<Scalar, Dynamic, 1> Vector; | 
 |   typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
 |   typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
 |   typedef SparseMatrix<Scalar> LUMatrixType; | 
 |   typedef SparseMatrix<Scalar, ColMajor, StorageIndex> UmfpackMatrixType; | 
 |   typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef; | 
 |   enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
 |  | 
 |  public: | 
 |   typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl; | 
 |   typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo; | 
 |  | 
 |   UmfPackLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); } | 
 |  | 
 |   template <typename InputMatrixType> | 
 |   explicit UmfPackLU(const InputMatrixType &matrix) : mp_matrix(matrix) { | 
 |     init(); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |   ~UmfPackLU() { | 
 |     if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
 |     if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
 |   } | 
 |  | 
 |   inline Index rows() const { return mp_matrix.rows(); } | 
 |   inline Index cols() const { return mp_matrix.cols(); } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the matrix.appears to be negative. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   inline const LUMatrixType &matrixL() const { | 
 |     if (m_extractedDataAreDirty) extractData(); | 
 |     return m_l; | 
 |   } | 
 |  | 
 |   inline const LUMatrixType &matrixU() const { | 
 |     if (m_extractedDataAreDirty) extractData(); | 
 |     return m_u; | 
 |   } | 
 |  | 
 |   inline const IntColVectorType &permutationP() const { | 
 |     if (m_extractedDataAreDirty) extractData(); | 
 |     return m_p; | 
 |   } | 
 |  | 
 |   inline const IntRowVectorType &permutationQ() const { | 
 |     if (m_extractedDataAreDirty) extractData(); | 
 |     return m_q; | 
 |   } | 
 |  | 
 |   /** Computes the sparse Cholesky decomposition of \a matrix | 
 |    *  Note that the matrix should be column-major, and in compressed format for best performance. | 
 |    *  \sa SparseMatrix::makeCompressed(). | 
 |    */ | 
 |   template <typename InputMatrixType> | 
 |   void compute(const InputMatrixType &matrix) { | 
 |     if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
 |     if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
 |     grab(matrix.derived()); | 
 |     analyzePattern_impl(); | 
 |     factorize_impl(); | 
 |   } | 
 |  | 
 |   /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |    * | 
 |    * This function is particularly useful when solving for several problems having the same structure. | 
 |    * | 
 |    * \sa factorize(), compute() | 
 |    */ | 
 |   template <typename InputMatrixType> | 
 |   void analyzePattern(const InputMatrixType &matrix) { | 
 |     if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
 |     if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
 |  | 
 |     grab(matrix.derived()); | 
 |  | 
 |     analyzePattern_impl(); | 
 |   } | 
 |  | 
 |   /** Provides the return status code returned by UmfPack during the numeric | 
 |    * factorization. | 
 |    * | 
 |    * \sa factorize(), compute() | 
 |    */ | 
 |   inline int umfpackFactorizeReturncode() const { | 
 |     eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); | 
 |     return m_fact_errorCode; | 
 |   } | 
 |  | 
 |   /** Provides access to the control settings array used by UmfPack. | 
 |    * | 
 |    * If this array contains NaN's, the default values are used. | 
 |    * | 
 |    * See UMFPACK documentation for details. | 
 |    */ | 
 |   inline const UmfpackControl &umfpackControl() const { return m_control; } | 
 |  | 
 |   /** Provides access to the control settings array used by UmfPack. | 
 |    * | 
 |    * If this array contains NaN's, the default values are used. | 
 |    * | 
 |    * See UMFPACK documentation for details. | 
 |    */ | 
 |   inline UmfpackControl &umfpackControl() { return m_control; } | 
 |  | 
 |   /** Performs a numeric decomposition of \a matrix | 
 |    * | 
 |    * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. | 
 |    * | 
 |    * \sa analyzePattern(), compute() | 
 |    */ | 
 |   template <typename InputMatrixType> | 
 |   void factorize(const InputMatrixType &matrix) { | 
 |     eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |     if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
 |  | 
 |     grab(matrix.derived()); | 
 |  | 
 |     factorize_impl(); | 
 |   } | 
 |  | 
 |   /** Prints the current UmfPack control settings. | 
 |    * | 
 |    * \sa umfpackControl() | 
 |    */ | 
 |   void printUmfpackControl() { umfpack_report_control(m_control.data(), Scalar(), StorageIndex()); } | 
 |  | 
 |   /** Prints statistics collected by UmfPack. | 
 |    * | 
 |    * \sa analyzePattern(), compute() | 
 |    */ | 
 |   void printUmfpackInfo() { | 
 |     eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |     umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(), StorageIndex()); | 
 |   } | 
 |  | 
 |   /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical | 
 |    * factorization). | 
 |    * | 
 |    * \sa analyzePattern(), compute() | 
 |    */ | 
 |   void printUmfpackStatus() { | 
 |     eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |     umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(), StorageIndex()); | 
 |   } | 
 |  | 
 |   /** \internal */ | 
 |   template <typename BDerived, typename XDerived> | 
 |   bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | 
 |  | 
 |   Scalar determinant() const; | 
 |  | 
 |   void extractData() const; | 
 |  | 
 |  protected: | 
 |   void init() { | 
 |     m_info = InvalidInput; | 
 |     m_isInitialized = false; | 
 |     m_numeric = 0; | 
 |     m_symbolic = 0; | 
 |     m_extractedDataAreDirty = true; | 
 |  | 
 |     umfpack_defaults(m_control.data(), Scalar(), StorageIndex()); | 
 |   } | 
 |  | 
 |   void analyzePattern_impl() { | 
 |     m_fact_errorCode = umfpack_symbolic(internal::convert_index<StorageIndex>(mp_matrix.rows()), | 
 |                                         internal::convert_index<StorageIndex>(mp_matrix.cols()), | 
 |                                         mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
 |                                         &m_symbolic, m_control.data(), m_umfpackInfo.data()); | 
 |  | 
 |     m_isInitialized = true; | 
 |     m_info = m_fact_errorCode ? InvalidInput : Success; | 
 |     m_analysisIsOk = true; | 
 |     m_factorizationIsOk = false; | 
 |     m_extractedDataAreDirty = true; | 
 |   } | 
 |  | 
 |   void factorize_impl() { | 
 |     m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
 |                                        m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); | 
 |  | 
 |     m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; | 
 |     m_factorizationIsOk = true; | 
 |     m_extractedDataAreDirty = true; | 
 |   } | 
 |  | 
 |   template <typename MatrixDerived> | 
 |   void grab(const EigenBase<MatrixDerived> &A) { | 
 |     internal::destroy_at(&mp_matrix); | 
 |     internal::construct_at(&mp_matrix, A.derived()); | 
 |   } | 
 |  | 
 |   void grab(const UmfpackMatrixRef &A) { | 
 |     if (&(A.derived()) != &mp_matrix) { | 
 |       internal::destroy_at(&mp_matrix); | 
 |       internal::construct_at(&mp_matrix, A); | 
 |     } | 
 |   } | 
 |  | 
 |   // cached data to reduce reallocation, etc. | 
 |   mutable LUMatrixType m_l; | 
 |   StorageIndex m_fact_errorCode; | 
 |   UmfpackControl m_control; | 
 |   mutable UmfpackInfo m_umfpackInfo; | 
 |  | 
 |   mutable LUMatrixType m_u; | 
 |   mutable IntColVectorType m_p; | 
 |   mutable IntRowVectorType m_q; | 
 |  | 
 |   UmfpackMatrixType m_dummy; | 
 |   UmfpackMatrixRef mp_matrix; | 
 |  | 
 |   void *m_numeric; | 
 |   void *m_symbolic; | 
 |  | 
 |   mutable ComputationInfo m_info; | 
 |   int m_factorizationIsOk; | 
 |   int m_analysisIsOk; | 
 |   mutable bool m_extractedDataAreDirty; | 
 |  | 
 |  private: | 
 |   UmfPackLU(const UmfPackLU &) {} | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | void UmfPackLU<MatrixType>::extractData() const { | 
 |   if (m_extractedDataAreDirty) { | 
 |     // get size of the data | 
 |     StorageIndex lnz, unz, rows, cols, nz_udiag; | 
 |     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
 |  | 
 |     // allocate data | 
 |     m_l.resize(rows, (std::min)(rows, cols)); | 
 |     m_l.resizeNonZeros(lnz); | 
 |  | 
 |     m_u.resize((std::min)(rows, cols), cols); | 
 |     m_u.resizeNonZeros(unz); | 
 |  | 
 |     m_p.resize(rows); | 
 |     m_q.resize(cols); | 
 |  | 
 |     // extract | 
 |     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), m_u.outerIndexPtr(), | 
 |                         m_u.innerIndexPtr(), m_u.valuePtr(), m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
 |  | 
 |     m_extractedDataAreDirty = false; | 
 |   } | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const { | 
 |   Scalar det; | 
 |   umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex()); | 
 |   return det; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename BDerived, typename XDerived> | 
 | bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { | 
 |   Index rhsCols = b.cols(); | 
 |   eigen_assert((BDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major rhs yet"); | 
 |   eigen_assert((XDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major result yet"); | 
 |   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); | 
 |  | 
 |   Scalar *x_ptr = 0; | 
 |   Matrix<Scalar, Dynamic, 1> x_tmp; | 
 |   if (x.innerStride() != 1) { | 
 |     x_tmp.resize(x.rows()); | 
 |     x_ptr = x_tmp.data(); | 
 |   } | 
 |   for (int j = 0; j < rhsCols; ++j) { | 
 |     if (x.innerStride() == 1) x_ptr = &x.col(j).coeffRef(0); | 
 |     StorageIndex errorCode = | 
 |         umfpack_solve(UMFPACK_A, mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), x_ptr, | 
 |                       &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data()); | 
 |     if (x.innerStride() != 1) x.col(j) = x_tmp; | 
 |     if (errorCode != 0) return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_UMFPACKSUPPORT_H |