|  | 
 | // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp  -o benchEigenSolver && ./benchEigenSolver | 
 | // options: | 
 | //  -DBENCH_GMM | 
 | //  -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3 | 
 | //  -DEIGEN_DONT_VECTORIZE | 
 | //  -msse2 | 
 | //  -DREPEAT=100 | 
 | //  -DTRIES=10 | 
 | //  -DSCALAR=double | 
 |  | 
 | #include <iostream> | 
 |  | 
 | #include <Eigen/Core> | 
 | #include <Eigen/QR> | 
 | #include <bench/BenchUtil.h> | 
 | using namespace Eigen; | 
 |  | 
 | #ifndef REPEAT | 
 | #define REPEAT 1000 | 
 | #endif | 
 |  | 
 | #ifndef TRIES | 
 | #define TRIES 4 | 
 | #endif | 
 |  | 
 | #ifndef SCALAR | 
 | #define SCALAR float | 
 | #endif | 
 |  | 
 | typedef SCALAR Scalar; | 
 |  | 
 | template <typename MatrixType> | 
 | __attribute__((noinline)) void benchEigenSolver(const MatrixType& m) { | 
 |   int rows = m.rows(); | 
 |   int cols = m.cols(); | 
 |  | 
 |   int stdRepeats = std::max(1, int((REPEAT * 1000) / (rows * rows * sqrt(rows)))); | 
 |   int saRepeats = stdRepeats * 4; | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows, cols); | 
 |   SquareMatrixType covMat = a * a.adjoint(); | 
 |  | 
 |   BenchTimer timerSa, timerStd; | 
 |  | 
 |   Scalar acc = 0; | 
 |   int r = internal::random<int>(0, covMat.rows() - 1); | 
 |   int c = internal::random<int>(0, covMat.cols() - 1); | 
 |   { | 
 |     SelfAdjointEigenSolver<SquareMatrixType> ei(covMat); | 
 |     for (int t = 0; t < TRIES; ++t) { | 
 |       timerSa.start(); | 
 |       for (int k = 0; k < saRepeats; ++k) { | 
 |         ei.compute(covMat); | 
 |         acc += ei.eigenvectors().coeff(r, c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     EigenSolver<SquareMatrixType> ei(covMat); | 
 |     for (int t = 0; t < TRIES; ++t) { | 
 |       timerStd.start(); | 
 |       for (int k = 0; k < stdRepeats; ++k) { | 
 |         ei.compute(covMat); | 
 |         acc += ei.eigenvectors().coeff(r, c); | 
 |       } | 
 |       timerStd.stop(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (MatrixType::RowsAtCompileTime == Dynamic) | 
 |     std::cout << "dyn   "; | 
 |   else | 
 |     std::cout << "fixed "; | 
 |   std::cout << covMat.rows() << " \t" << timerSa.value() * REPEAT / saRepeats << "s \t" | 
 |             << timerStd.value() * REPEAT / stdRepeats << "s"; | 
 |  | 
 | #ifdef BENCH_GMM | 
 |   if (MatrixType::RowsAtCompileTime == Dynamic) { | 
 |     timerSa.reset(); | 
 |     timerStd.reset(); | 
 |  | 
 |     gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(), covMat.cols()); | 
 |     gmm::dense_matrix<Scalar> eigvect(covMat.rows(), covMat.cols()); | 
 |     std::vector<Scalar> eigval(covMat.rows()); | 
 |     eiToGmm(covMat, gmmCovMat); | 
 |     for (int t = 0; t < TRIES; ++t) { | 
 |       timerSa.start(); | 
 |       for (int k = 0; k < saRepeats; ++k) { | 
 |         gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); | 
 |         acc += eigvect(r, c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |     // the non-selfadjoint solver does not compute the eigen vectors | 
 |     //     for (int t=0; t<TRIES; ++t) | 
 |     //     { | 
 |     //       timerStd.start(); | 
 |     //       for (int k=0; k<stdRepeats; ++k) | 
 |     //       { | 
 |     //         gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); | 
 |     //         acc += eigvect(r,c); | 
 |     //       } | 
 |     //       timerStd.stop(); | 
 |     //     } | 
 |  | 
 |     std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s" | 
 |               << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ "   na   "; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef BENCH_GSL | 
 |   if (MatrixType::RowsAtCompileTime == Dynamic) { | 
 |     timerSa.reset(); | 
 |     timerStd.reset(); | 
 |  | 
 |     gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(), covMat.cols()); | 
 |     gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(), covMat.cols()); | 
 |     gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(), covMat.cols()); | 
 |     gsl_vector* eigval = gsl_vector_alloc(covMat.rows()); | 
 |     gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows()); | 
 |  | 
 |     gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(), covMat.cols()); | 
 |     gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows()); | 
 |     gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows()); | 
 |  | 
 |     eiToGsl(covMat, &gslCovMat); | 
 |     for (int t = 0; t < TRIES; ++t) { | 
 |       timerSa.start(); | 
 |       for (int k = 0; k < saRepeats; ++k) { | 
 |         gsl_matrix_memcpy(gslCopy, gslCovMat); | 
 |         gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm); | 
 |         acc += gsl_matrix_get(eigvect, r, c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |     for (int t = 0; t < TRIES; ++t) { | 
 |       timerStd.start(); | 
 |       for (int k = 0; k < stdRepeats; ++k) { | 
 |         gsl_matrix_memcpy(gslCopy, gslCovMat); | 
 |         gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm); | 
 |         acc += GSL_REAL(gsl_matrix_complex_get(eigvectz, r, c)); | 
 |       } | 
 |       timerStd.stop(); | 
 |     } | 
 |  | 
 |     std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s \t" << timerStd.value() * REPEAT / stdRepeats | 
 |               << "s"; | 
 |  | 
 |     gsl_matrix_free(gslCovMat); | 
 |     gsl_vector_free(gslCopy); | 
 |     gsl_matrix_free(eigvect); | 
 |     gsl_vector_free(eigval); | 
 |     gsl_matrix_complex_free(eigvectz); | 
 |     gsl_vector_complex_free(eigvalz); | 
 |     gsl_eigen_symmv_free(eisymm); | 
 |     gsl_eigen_nonsymmv_free(einonsymm); | 
 |   } | 
 | #endif | 
 |  | 
 |   std::cout << "\n"; | 
 |  | 
 |   // make sure the compiler does not optimize too much | 
 |   if (acc == 123) std::cout << acc; | 
 | } | 
 |  | 
 | int main(int argc, char* argv[]) { | 
 |   const int dynsizes[] = {4, 6, 8, 12, 16, 24, 32, 64, 128, 256, 512, 0}; | 
 |   std::cout << "size            selfadjoint       generic"; | 
 | #ifdef BENCH_GMM | 
 |   std::cout << "        GMM++          "; | 
 | #endif | 
 | #ifdef BENCH_GSL | 
 |   std::cout << "       GSL (double + ATLAS)  "; | 
 | #endif | 
 |   std::cout << "\n"; | 
 |   for (uint i = 0; dynsizes[i] > 0; ++i) benchEigenSolver(Matrix<Scalar, Dynamic, Dynamic>(dynsizes[i], dynsizes[i])); | 
 |  | 
 |   benchEigenSolver(Matrix<Scalar, 2, 2>()); | 
 |   benchEigenSolver(Matrix<Scalar, 3, 3>()); | 
 |   benchEigenSolver(Matrix<Scalar, 4, 4>()); | 
 |   benchEigenSolver(Matrix<Scalar, 6, 6>()); | 
 |   benchEigenSolver(Matrix<Scalar, 8, 8>()); | 
 |   benchEigenSolver(Matrix<Scalar, 12, 12>()); | 
 |   benchEigenSolver(Matrix<Scalar, 16, 16>()); | 
 |   return 0; | 
 | } |