| /* ztbmv.f -- translated by f2c (version 20100827). | 
 |    You must link the resulting object file with libf2c: | 
 |         on Microsoft Windows system, link with libf2c.lib; | 
 |         on Linux or Unix systems, link with .../path/to/libf2c.a -lm | 
 |         or, if you install libf2c.a in a standard place, with -lf2c -lm | 
 |         -- in that order, at the end of the command line, as in | 
 |                 cc *.o -lf2c -lm | 
 |         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | 
 |  | 
 |                 http://www.netlib.org/f2c/libf2c.zip | 
 | */ | 
 |  | 
 | #include "datatypes.h" | 
 |  | 
 | static inline void d_cnjg(doublecomplex *r, doublecomplex *z) { | 
 |   r->r = z->r; | 
 |   r->i = -(z->i); | 
 | } | 
 |  | 
 | /* Subroutine */ void ztbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, doublecomplex *a, | 
 |                              integer *lda, doublecomplex *x, integer *incx) { | 
 |   /* System generated locals */ | 
 |   integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; | 
 |   doublecomplex z__1, z__2, z__3; | 
 |  | 
 |   /* Local variables */ | 
 |   integer i__, j, l, ix, jx, kx, info; | 
 |   doublecomplex temp; | 
 |   extern logical lsame_(char *, char *); | 
 |   integer kplus1; | 
 |   extern /* Subroutine */ void xerbla_(const char *, integer *); | 
 |   logical noconj, nounit; | 
 |  | 
 |   /*     .. Scalar Arguments .. */ | 
 |   /*     .. */ | 
 |   /*     .. Array Arguments .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*  Purpose */ | 
 |   /*  ======= */ | 
 |  | 
 |   /*  ZTBMV  performs one of the matrix-vector operations */ | 
 |  | 
 |   /*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x, */ | 
 |  | 
 |   /*  where x is an n element vector and  A is an n by n unit, or non-unit, */ | 
 |   /*  upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ | 
 |  | 
 |   /*  Arguments */ | 
 |   /*  ========== */ | 
 |  | 
 |   /*  UPLO   - CHARACTER*1. */ | 
 |   /*           On entry, UPLO specifies whether the matrix is an upper or */ | 
 |   /*           lower triangular matrix as follows: */ | 
 |  | 
 |   /*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */ | 
 |  | 
 |   /*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */ | 
 |  | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  TRANS  - CHARACTER*1. */ | 
 |   /*           On entry, TRANS specifies the operation to be performed as */ | 
 |   /*           follows: */ | 
 |  | 
 |   /*              TRANS = 'N' or 'n'   x := A*x. */ | 
 |  | 
 |   /*              TRANS = 'T' or 't'   x := A'*x. */ | 
 |  | 
 |   /*              TRANS = 'C' or 'c'   x := conjg( A' )*x. */ | 
 |  | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  DIAG   - CHARACTER*1. */ | 
 |   /*           On entry, DIAG specifies whether or not A is unit */ | 
 |   /*           triangular as follows: */ | 
 |  | 
 |   /*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */ | 
 |  | 
 |   /*              DIAG = 'N' or 'n'   A is not assumed to be unit */ | 
 |   /*                                  triangular. */ | 
 |  | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  N      - INTEGER. */ | 
 |   /*           On entry, N specifies the order of the matrix A. */ | 
 |   /*           N must be at least zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  K      - INTEGER. */ | 
 |   /*           On entry with UPLO = 'U' or 'u', K specifies the number of */ | 
 |   /*           super-diagonals of the matrix A. */ | 
 |   /*           On entry with UPLO = 'L' or 'l', K specifies the number of */ | 
 |   /*           sub-diagonals of the matrix A. */ | 
 |   /*           K must satisfy  0 .le. K. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ). */ | 
 |   /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ | 
 |   /*           by n part of the array A must contain the upper triangular */ | 
 |   /*           band part of the matrix of coefficients, supplied column by */ | 
 |   /*           column, with the leading diagonal of the matrix in row */ | 
 |   /*           ( k + 1 ) of the array, the first super-diagonal starting at */ | 
 |   /*           position 2 in row k, and so on. The top left k by k triangle */ | 
 |   /*           of the array A is not referenced. */ | 
 |   /*           The following program segment will transfer an upper */ | 
 |   /*           triangular band matrix from conventional full matrix storage */ | 
 |   /*           to band storage: */ | 
 |  | 
 |   /*                 DO 20, J = 1, N */ | 
 |   /*                    M = K + 1 - J */ | 
 |   /*                    DO 10, I = MAX( 1, J - K ), J */ | 
 |   /*                       A( M + I, J ) = matrix( I, J ) */ | 
 |   /*              10    CONTINUE */ | 
 |   /*              20 CONTINUE */ | 
 |  | 
 |   /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ | 
 |   /*           by n part of the array A must contain the lower triangular */ | 
 |   /*           band part of the matrix of coefficients, supplied column by */ | 
 |   /*           column, with the leading diagonal of the matrix in row 1 of */ | 
 |   /*           the array, the first sub-diagonal starting at position 1 in */ | 
 |   /*           row 2, and so on. The bottom right k by k triangle of the */ | 
 |   /*           array A is not referenced. */ | 
 |   /*           The following program segment will transfer a lower */ | 
 |   /*           triangular band matrix from conventional full matrix storage */ | 
 |   /*           to band storage: */ | 
 |  | 
 |   /*                 DO 20, J = 1, N */ | 
 |   /*                    M = 1 - J */ | 
 |   /*                    DO 10, I = J, MIN( N, J + K ) */ | 
 |   /*                       A( M + I, J ) = matrix( I, J ) */ | 
 |   /*              10    CONTINUE */ | 
 |   /*              20 CONTINUE */ | 
 |  | 
 |   /*           Note that when DIAG = 'U' or 'u' the elements of the array A */ | 
 |   /*           corresponding to the diagonal elements of the matrix are not */ | 
 |   /*           referenced, but are assumed to be unity. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  LDA    - INTEGER. */ | 
 |   /*           On entry, LDA specifies the first dimension of A as declared */ | 
 |   /*           in the calling (sub) program. LDA must be at least */ | 
 |   /*           ( k + 1 ). */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  X      - COMPLEX*16       array of dimension at least */ | 
 |   /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | 
 |   /*           Before entry, the incremented array X must contain the n */ | 
 |   /*           element vector x. On exit, X is overwritten with the */ | 
 |   /*           transformed vector x. */ | 
 |  | 
 |   /*  INCX   - INTEGER. */ | 
 |   /*           On entry, INCX specifies the increment for the elements of */ | 
 |   /*           X. INCX must not be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  Further Details */ | 
 |   /*  =============== */ | 
 |  | 
 |   /*  Level 2 Blas routine. */ | 
 |  | 
 |   /*  -- Written on 22-October-1986. */ | 
 |   /*     Jack Dongarra, Argonne National Lab. */ | 
 |   /*     Jeremy Du Croz, Nag Central Office. */ | 
 |   /*     Sven Hammarling, Nag Central Office. */ | 
 |   /*     Richard Hanson, Sandia National Labs. */ | 
 |  | 
 |   /*  ===================================================================== */ | 
 |  | 
 |   /*     .. Parameters .. */ | 
 |   /*     .. */ | 
 |   /*     .. Local Scalars .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Functions .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Subroutines .. */ | 
 |   /*     .. */ | 
 |   /*     .. Intrinsic Functions .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*     Test the input parameters. */ | 
 |  | 
 |   /* Parameter adjustments */ | 
 |   a_dim1 = *lda; | 
 |   a_offset = 1 + a_dim1; | 
 |   a -= a_offset; | 
 |   --x; | 
 |  | 
 |   /* Function Body */ | 
 |   info = 0; | 
 |   if (!lsame_(uplo, "U") && !lsame_(uplo, "L")) { | 
 |     info = 1; | 
 |   } else if (!lsame_(trans, "N") && !lsame_(trans, "T") && !lsame_(trans, "C")) { | 
 |     info = 2; | 
 |   } else if (!lsame_(diag, "U") && !lsame_(diag, "N")) { | 
 |     info = 3; | 
 |   } else if (*n < 0) { | 
 |     info = 4; | 
 |   } else if (*k < 0) { | 
 |     info = 5; | 
 |   } else if (*lda < *k + 1) { | 
 |     info = 7; | 
 |   } else if (*incx == 0) { | 
 |     info = 9; | 
 |   } | 
 |   if (info != 0) { | 
 |     xerbla_("ZTBMV ", &info); | 
 |     return; | 
 |   } | 
 |  | 
 |   /*     Quick return if possible. */ | 
 |  | 
 |   if (*n == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   noconj = lsame_(trans, "T"); | 
 |   nounit = lsame_(diag, "N"); | 
 |  | 
 |   /*     Set up the start point in X if the increment is not unity. This */ | 
 |   /*     will be  ( N - 1 )*INCX   too small for descending loops. */ | 
 |  | 
 |   if (*incx <= 0) { | 
 |     kx = 1 - (*n - 1) * *incx; | 
 |   } else if (*incx != 1) { | 
 |     kx = 1; | 
 |   } | 
 |  | 
 |   /*     Start the operations. In this version the elements of A are */ | 
 |   /*     accessed sequentially with one pass through A. */ | 
 |  | 
 |   if (lsame_(trans, "N")) { | 
 |     /*         Form  x := A*x. */ | 
 |  | 
 |     if (lsame_(uplo, "U")) { | 
 |       kplus1 = *k + 1; | 
 |       if (*incx == 1) { | 
 |         i__1 = *n; | 
 |         for (j = 1; j <= i__1; ++j) { | 
 |           i__2 = j; | 
 |           if (x[i__2].r != 0. || x[i__2].i != 0.) { | 
 |             i__2 = j; | 
 |             temp.r = x[i__2].r, temp.i = x[i__2].i; | 
 |             l = kplus1 - j; | 
 |             /* Computing MAX */ | 
 |             i__2 = 1, i__3 = j - *k; | 
 |             i__4 = j - 1; | 
 |             for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) { | 
 |               i__2 = i__; | 
 |               i__3 = i__; | 
 |               i__5 = l + i__ + j * a_dim1; | 
 |               z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r; | 
 |               z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + z__2.i; | 
 |               x[i__2].r = z__1.r, x[i__2].i = z__1.i; | 
 |               /* L10: */ | 
 |             } | 
 |             if (nounit) { | 
 |               i__4 = j; | 
 |               i__2 = j; | 
 |               i__3 = kplus1 + j * a_dim1; | 
 |               z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[i__3].i, | 
 |               z__1.i = x[i__2].r * a[i__3].i + x[i__2].i * a[i__3].r; | 
 |               x[i__4].r = z__1.r, x[i__4].i = z__1.i; | 
 |             } | 
 |           } | 
 |           /* L20: */ | 
 |         } | 
 |       } else { | 
 |         jx = kx; | 
 |         i__1 = *n; | 
 |         for (j = 1; j <= i__1; ++j) { | 
 |           i__4 = jx; | 
 |           if (x[i__4].r != 0. || x[i__4].i != 0.) { | 
 |             i__4 = jx; | 
 |             temp.r = x[i__4].r, temp.i = x[i__4].i; | 
 |             ix = kx; | 
 |             l = kplus1 - j; | 
 |             /* Computing MAX */ | 
 |             i__4 = 1, i__2 = j - *k; | 
 |             i__3 = j - 1; | 
 |             for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) { | 
 |               i__4 = ix; | 
 |               i__2 = ix; | 
 |               i__5 = l + i__ + j * a_dim1; | 
 |               z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r; | 
 |               z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i + z__2.i; | 
 |               x[i__4].r = z__1.r, x[i__4].i = z__1.i; | 
 |               ix += *incx; | 
 |               /* L30: */ | 
 |             } | 
 |             if (nounit) { | 
 |               i__3 = jx; | 
 |               i__4 = jx; | 
 |               i__2 = kplus1 + j * a_dim1; | 
 |               z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[i__2].i, | 
 |               z__1.i = x[i__4].r * a[i__2].i + x[i__4].i * a[i__2].r; | 
 |               x[i__3].r = z__1.r, x[i__3].i = z__1.i; | 
 |             } | 
 |           } | 
 |           jx += *incx; | 
 |           if (j > *k) { | 
 |             kx += *incx; | 
 |           } | 
 |           /* L40: */ | 
 |         } | 
 |       } | 
 |     } else { | 
 |       if (*incx == 1) { | 
 |         for (j = *n; j >= 1; --j) { | 
 |           i__1 = j; | 
 |           if (x[i__1].r != 0. || x[i__1].i != 0.) { | 
 |             i__1 = j; | 
 |             temp.r = x[i__1].r, temp.i = x[i__1].i; | 
 |             l = 1 - j; | 
 |             /* Computing MIN */ | 
 |             i__1 = *n, i__3 = j + *k; | 
 |             i__4 = j + 1; | 
 |             for (i__ = min(i__1, i__3); i__ >= i__4; --i__) { | 
 |               i__1 = i__; | 
 |               i__3 = i__; | 
 |               i__2 = l + i__ + j * a_dim1; | 
 |               z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r; | 
 |               z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + z__2.i; | 
 |               x[i__1].r = z__1.r, x[i__1].i = z__1.i; | 
 |               /* L50: */ | 
 |             } | 
 |             if (nounit) { | 
 |               i__4 = j; | 
 |               i__1 = j; | 
 |               i__3 = j * a_dim1 + 1; | 
 |               z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[i__3].i, | 
 |               z__1.i = x[i__1].r * a[i__3].i + x[i__1].i * a[i__3].r; | 
 |               x[i__4].r = z__1.r, x[i__4].i = z__1.i; | 
 |             } | 
 |           } | 
 |           /* L60: */ | 
 |         } | 
 |       } else { | 
 |         kx += (*n - 1) * *incx; | 
 |         jx = kx; | 
 |         for (j = *n; j >= 1; --j) { | 
 |           i__4 = jx; | 
 |           if (x[i__4].r != 0. || x[i__4].i != 0.) { | 
 |             i__4 = jx; | 
 |             temp.r = x[i__4].r, temp.i = x[i__4].i; | 
 |             ix = kx; | 
 |             l = 1 - j; | 
 |             /* Computing MIN */ | 
 |             i__4 = *n, i__1 = j + *k; | 
 |             i__3 = j + 1; | 
 |             for (i__ = min(i__4, i__1); i__ >= i__3; --i__) { | 
 |               i__4 = ix; | 
 |               i__1 = ix; | 
 |               i__2 = l + i__ + j * a_dim1; | 
 |               z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r; | 
 |               z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i + z__2.i; | 
 |               x[i__4].r = z__1.r, x[i__4].i = z__1.i; | 
 |               ix -= *incx; | 
 |               /* L70: */ | 
 |             } | 
 |             if (nounit) { | 
 |               i__3 = jx; | 
 |               i__4 = jx; | 
 |               i__1 = j * a_dim1 + 1; | 
 |               z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[i__1].i, | 
 |               z__1.i = x[i__4].r * a[i__1].i + x[i__4].i * a[i__1].r; | 
 |               x[i__3].r = z__1.r, x[i__3].i = z__1.i; | 
 |             } | 
 |           } | 
 |           jx -= *incx; | 
 |           if (*n - j >= *k) { | 
 |             kx -= *incx; | 
 |           } | 
 |           /* L80: */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     /*        Form  x := A'*x  or  x := conjg( A' )*x. */ | 
 |  | 
 |     if (lsame_(uplo, "U")) { | 
 |       kplus1 = *k + 1; | 
 |       if (*incx == 1) { | 
 |         for (j = *n; j >= 1; --j) { | 
 |           i__3 = j; | 
 |           temp.r = x[i__3].r, temp.i = x[i__3].i; | 
 |           l = kplus1 - j; | 
 |           if (noconj) { | 
 |             if (nounit) { | 
 |               i__3 = kplus1 + j * a_dim1; | 
 |               z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MAX */ | 
 |             i__4 = 1, i__1 = j - *k; | 
 |             i__3 = max(i__4, i__1); | 
 |             for (i__ = j - 1; i__ >= i__3; --i__) { | 
 |               i__4 = l + i__ + j * a_dim1; | 
 |               i__1 = i__; | 
 |               z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i, | 
 |               z__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               /* L90: */ | 
 |             } | 
 |           } else { | 
 |             if (nounit) { | 
 |               d_cnjg(&z__2, &a[kplus1 + j * a_dim1]); | 
 |               z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MAX */ | 
 |             i__4 = 1, i__1 = j - *k; | 
 |             i__3 = max(i__4, i__1); | 
 |             for (i__ = j - 1; i__ >= i__3; --i__) { | 
 |               d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | 
 |               i__4 = i__; | 
 |               z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               /* L100: */ | 
 |             } | 
 |           } | 
 |           i__3 = j; | 
 |           x[i__3].r = temp.r, x[i__3].i = temp.i; | 
 |           /* L110: */ | 
 |         } | 
 |       } else { | 
 |         kx += (*n - 1) * *incx; | 
 |         jx = kx; | 
 |         for (j = *n; j >= 1; --j) { | 
 |           i__3 = jx; | 
 |           temp.r = x[i__3].r, temp.i = x[i__3].i; | 
 |           kx -= *incx; | 
 |           ix = kx; | 
 |           l = kplus1 - j; | 
 |           if (noconj) { | 
 |             if (nounit) { | 
 |               i__3 = kplus1 + j * a_dim1; | 
 |               z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MAX */ | 
 |             i__4 = 1, i__1 = j - *k; | 
 |             i__3 = max(i__4, i__1); | 
 |             for (i__ = j - 1; i__ >= i__3; --i__) { | 
 |               i__4 = l + i__ + j * a_dim1; | 
 |               i__1 = ix; | 
 |               z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i, | 
 |               z__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               ix -= *incx; | 
 |               /* L120: */ | 
 |             } | 
 |           } else { | 
 |             if (nounit) { | 
 |               d_cnjg(&z__2, &a[kplus1 + j * a_dim1]); | 
 |               z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MAX */ | 
 |             i__4 = 1, i__1 = j - *k; | 
 |             i__3 = max(i__4, i__1); | 
 |             for (i__ = j - 1; i__ >= i__3; --i__) { | 
 |               d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | 
 |               i__4 = ix; | 
 |               z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               ix -= *incx; | 
 |               /* L130: */ | 
 |             } | 
 |           } | 
 |           i__3 = jx; | 
 |           x[i__3].r = temp.r, x[i__3].i = temp.i; | 
 |           jx -= *incx; | 
 |           /* L140: */ | 
 |         } | 
 |       } | 
 |     } else { | 
 |       if (*incx == 1) { | 
 |         i__3 = *n; | 
 |         for (j = 1; j <= i__3; ++j) { | 
 |           i__4 = j; | 
 |           temp.r = x[i__4].r, temp.i = x[i__4].i; | 
 |           l = 1 - j; | 
 |           if (noconj) { | 
 |             if (nounit) { | 
 |               i__4 = j * a_dim1 + 1; | 
 |               z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, z__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MIN */ | 
 |             i__1 = *n, i__2 = j + *k; | 
 |             i__4 = min(i__1, i__2); | 
 |             for (i__ = j + 1; i__ <= i__4; ++i__) { | 
 |               i__1 = l + i__ + j * a_dim1; | 
 |               i__2 = i__; | 
 |               z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i, | 
 |               z__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               /* L150: */ | 
 |             } | 
 |           } else { | 
 |             if (nounit) { | 
 |               d_cnjg(&z__2, &a[j * a_dim1 + 1]); | 
 |               z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MIN */ | 
 |             i__1 = *n, i__2 = j + *k; | 
 |             i__4 = min(i__1, i__2); | 
 |             for (i__ = j + 1; i__ <= i__4; ++i__) { | 
 |               d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | 
 |               i__1 = i__; | 
 |               z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, z__2.i = z__3.r * x[i__1].i + z__3.i * x[i__1].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               /* L160: */ | 
 |             } | 
 |           } | 
 |           i__4 = j; | 
 |           x[i__4].r = temp.r, x[i__4].i = temp.i; | 
 |           /* L170: */ | 
 |         } | 
 |       } else { | 
 |         jx = kx; | 
 |         i__3 = *n; | 
 |         for (j = 1; j <= i__3; ++j) { | 
 |           i__4 = jx; | 
 |           temp.r = x[i__4].r, temp.i = x[i__4].i; | 
 |           kx += *incx; | 
 |           ix = kx; | 
 |           l = 1 - j; | 
 |           if (noconj) { | 
 |             if (nounit) { | 
 |               i__4 = j * a_dim1 + 1; | 
 |               z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, z__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MIN */ | 
 |             i__1 = *n, i__2 = j + *k; | 
 |             i__4 = min(i__1, i__2); | 
 |             for (i__ = j + 1; i__ <= i__4; ++i__) { | 
 |               i__1 = l + i__ + j * a_dim1; | 
 |               i__2 = ix; | 
 |               z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i, | 
 |               z__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               ix += *incx; | 
 |               /* L180: */ | 
 |             } | 
 |           } else { | 
 |             if (nounit) { | 
 |               d_cnjg(&z__2, &a[j * a_dim1 + 1]); | 
 |               z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |             } | 
 |             /* Computing MIN */ | 
 |             i__1 = *n, i__2 = j + *k; | 
 |             i__4 = min(i__1, i__2); | 
 |             for (i__ = j + 1; i__ <= i__4; ++i__) { | 
 |               d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | 
 |               i__1 = ix; | 
 |               z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, z__2.i = z__3.r * x[i__1].i + z__3.i * x[i__1].r; | 
 |               z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; | 
 |               temp.r = z__1.r, temp.i = z__1.i; | 
 |               ix += *incx; | 
 |               /* L190: */ | 
 |             } | 
 |           } | 
 |           i__4 = jx; | 
 |           x[i__4].r = temp.r, x[i__4].i = temp.i; | 
 |           jx += *incx; | 
 |           /* L200: */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /*     End of ZTBMV . */ | 
 |  | 
 | } /* ztbmv_ */ |