|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_simple_chip() { | 
|  | Tensor<float, 5, DataLayout> tensor(2, 3, 5, 7, 11); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip1; | 
|  | chip1 = tensor.template chip<0>(1); | 
|  |  | 
|  | VERIFY_IS_EQUAL(chip1.dimension(0), 3); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(1), 5); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(3), 11); | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1, i, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip2 = tensor.template chip<1>(1); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(1), 5); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip3 = tensor.template chip<2>(2); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip4(tensor.template chip<3>(5)); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip5(tensor.template chip<4>(7)); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(3), 7); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_dynamic_chip() { | 
|  | Tensor<float, 5, DataLayout> tensor(2, 3, 5, 7, 11); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip1; | 
|  | chip1 = tensor.chip(1, 0); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(0), 3); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(1), 5); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip1.dimension(3), 11); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1, i, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip2 = tensor.chip(1, 1); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(1), 5); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip2.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip3 = tensor.chip(2, 2); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(chip3.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip4(tensor.chip(5, 3)); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(chip4.dimension(3), 11); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> chip5(tensor.chip(7, 4)); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(chip5.dimension(3), 7); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_chip_in_expr() { | 
|  | Tensor<float, 5, DataLayout> input1(2, 3, 5, 7, 11); | 
|  | input1.setRandom(); | 
|  | Tensor<float, 4, DataLayout> input2(3, 5, 7, 11); | 
|  | input2.setRandom(); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> result = input1.template chip<0>(0) + input2; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | for (int l = 0; l < 11; ++l) { | 
|  | float expected = input1(0, i, j, k, l) + input2(i, j, k, l); | 
|  | VERIFY_IS_EQUAL(result(i, j, k, l), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 3, DataLayout> input3(3, 7, 11); | 
|  | input3.setRandom(); | 
|  | Tensor<float, 3, DataLayout> result2 = input1.template chip<0>(0).template chip<1>(2) + input3; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | for (int k = 0; k < 11; ++k) { | 
|  | float expected = input1(0, i, 2, j, k) + input3(i, j, k); | 
|  | VERIFY_IS_EQUAL(result2(i, j, k), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_chip_as_lvalue() { | 
|  | Tensor<float, 5, DataLayout> input1(2, 3, 5, 7, 11); | 
|  | input1.setRandom(); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> input2(3, 5, 7, 11); | 
|  | input2.setRandom(); | 
|  | Tensor<float, 5, DataLayout> tensor = input1; | 
|  | tensor.template chip<0>(1) = input2; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (i != 1) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input2(j, k, l, m)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> input3(2, 5, 7, 11); | 
|  | input3.setRandom(); | 
|  | tensor = input1; | 
|  | tensor.template chip<1>(1) = input3; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (j != 1) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input3(i, k, l, m)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> input4(2, 3, 7, 11); | 
|  | input4.setRandom(); | 
|  | tensor = input1; | 
|  | tensor.template chip<2>(3) = input4; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (k != 3) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input4(i, j, l, m)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> input5(2, 3, 5, 11); | 
|  | input5.setRandom(); | 
|  | tensor = input1; | 
|  | tensor.template chip<3>(4) = input5; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (l != 4) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input5(i, j, k, m)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> input6(2, 3, 5, 7); | 
|  | input6.setRandom(); | 
|  | tensor = input1; | 
|  | tensor.template chip<4>(5) = input6; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (m != 5) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input6(i, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 5, DataLayout> input7(2, 3, 5, 7, 11); | 
|  | input7.setRandom(); | 
|  | tensor = input1; | 
|  | tensor.chip(0, 0) = input7.chip(0, 0); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | for (int m = 0; m < 11; ++m) { | 
|  | if (i != 0) { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); | 
|  | } else { | 
|  | VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input7(i, j, k, l, m)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_chip_raw_data_col_major() { | 
|  | Tensor<float, 5, ColMajor> tensor(2, 3, 5, 7, 11); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<4>(3)), DefaultDevice> Evaluator4; | 
|  | auto chip = Evaluator4(tensor.chip<4>(3), DefaultDevice()); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | int chip_index = i + 2 * (j + 3 * (k + 5 * l)); | 
|  | VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(i, j, k, l, 3)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<0>(0)), DefaultDevice> Evaluator0; | 
|  | auto chip0 = Evaluator0(tensor.chip<0>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip0.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1; | 
|  | auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2; | 
|  | auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3; | 
|  | auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0)); | 
|  | } | 
|  |  | 
|  | static void test_chip_raw_data_row_major() { | 
|  | Tensor<float, 5, RowMajor> tensor(11, 7, 5, 3, 2); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<0>(3)), DefaultDevice> Evaluator0; | 
|  | auto chip = Evaluator0(tensor.chip<0>(3), DefaultDevice()); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | for (int l = 0; l < 2; ++l) { | 
|  | int chip_index = l + 2 * (k + 3 * (j + 5 * i)); | 
|  | VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(3, i, j, k, l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1; | 
|  | auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2; | 
|  | auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3; | 
|  | auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0)); | 
|  |  | 
|  | typedef TensorEvaluator<decltype(tensor.chip<4>(0)), DefaultDevice> Evaluator4; | 
|  | auto chip4 = Evaluator4(tensor.chip<4>(0), DefaultDevice()); | 
|  | VERIFY_IS_EQUAL(chip4.data(), static_cast<float*>(0)); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_chipping) { | 
|  | CALL_SUBTEST(test_simple_chip<ColMajor>()); | 
|  | CALL_SUBTEST(test_simple_chip<RowMajor>()); | 
|  | CALL_SUBTEST(test_dynamic_chip<ColMajor>()); | 
|  | CALL_SUBTEST(test_dynamic_chip<RowMajor>()); | 
|  | CALL_SUBTEST(test_chip_in_expr<ColMajor>()); | 
|  | CALL_SUBTEST(test_chip_in_expr<RowMajor>()); | 
|  | CALL_SUBTEST(test_chip_as_lvalue<ColMajor>()); | 
|  | CALL_SUBTEST(test_chip_as_lvalue<RowMajor>()); | 
|  | CALL_SUBTEST(test_chip_raw_data_col_major()); | 
|  | CALL_SUBTEST(test_chip_raw_data_row_major()); | 
|  | } |