|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Mark Borgerding mark a borgerding net | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/FFT> | 
|  |  | 
|  | template <typename T> | 
|  | inline std::complex<T> RandomCpx() { | 
|  | return std::complex<T>((T)(rand() / (T)RAND_MAX - .5), (T)(rand() / (T)RAND_MAX - .5)); | 
|  | } | 
|  |  | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | template <typename T> | 
|  | inline complex<long double> promote(complex<T> x) { | 
|  | return complex<long double>((long double)x.real(), (long double)x.imag()); | 
|  | } | 
|  |  | 
|  | inline complex<long double> promote(float x) { return complex<long double>((long double)x); } | 
|  | inline complex<long double> promote(double x) { return complex<long double>((long double)x); } | 
|  | inline complex<long double> promote(long double x) { return complex<long double>((long double)x); } | 
|  |  | 
|  | template <typename VT1, typename VT2> | 
|  | long double fft_rmse(const VT1& fftbuf, const VT2& timebuf) { | 
|  | long double totalpower = 0; | 
|  | long double difpower = 0; | 
|  | long double pi = acos((long double)-1); | 
|  | for (size_t k0 = 0; k0 < (size_t)fftbuf.size(); ++k0) { | 
|  | complex<long double> acc = 0; | 
|  | long double phinc = (long double)(-2.) * k0 * pi / timebuf.size(); | 
|  | for (size_t k1 = 0; k1 < (size_t)timebuf.size(); ++k1) { | 
|  | acc += promote(timebuf[k1]) * exp(complex<long double>(0, k1 * phinc)); | 
|  | } | 
|  | totalpower += numext::abs2(acc); | 
|  | complex<long double> x = promote(fftbuf[k0]); | 
|  | complex<long double> dif = acc - x; | 
|  | difpower += numext::abs2(dif); | 
|  | // cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(numext::abs2(dif)) << endl; | 
|  | } | 
|  | // cerr << "rmse:" << sqrt(difpower/totalpower) << endl; | 
|  | return sqrt(difpower / totalpower); | 
|  | } | 
|  |  | 
|  | template <typename VT1, typename VT2> | 
|  | long double dif_rmse(const VT1 buf1, const VT2 buf2) { | 
|  | long double totalpower = 0; | 
|  | long double difpower = 0; | 
|  | size_t n = (min)(buf1.size(), buf2.size()); | 
|  | for (size_t k = 0; k < n; ++k) { | 
|  | totalpower += (long double)((numext::abs2(buf1[k]) + numext::abs2(buf2[k])) / 2); | 
|  | difpower += (long double)(numext::abs2(buf1[k] - buf2[k])); | 
|  | } | 
|  | return sqrt(difpower / totalpower); | 
|  | } | 
|  |  | 
|  | enum { StdVectorContainer, EigenVectorContainer }; | 
|  |  | 
|  | template <int Container, typename Scalar> | 
|  | struct VectorType; | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct VectorType<StdVectorContainer, Scalar> { | 
|  | typedef vector<Scalar> type; | 
|  | }; | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct VectorType<EigenVectorContainer, Scalar> { | 
|  | typedef Matrix<Scalar, Dynamic, 1> type; | 
|  | }; | 
|  |  | 
|  | template <int Container, typename T> | 
|  | void test_scalar_generic(int nfft) { | 
|  | typedef typename FFT<T>::Complex Complex; | 
|  | typedef typename FFT<T>::Scalar Scalar; | 
|  | typedef typename VectorType<Container, Scalar>::type ScalarVector; | 
|  | typedef typename VectorType<Container, Complex>::type ComplexVector; | 
|  |  | 
|  | FFT<T> fft; | 
|  | ScalarVector tbuf(nfft); | 
|  | ComplexVector freqBuf; | 
|  | for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5); | 
|  |  | 
|  | // make sure it DOESN'T give the right full spectrum answer | 
|  | // if we've asked for half-spectrum | 
|  | fft.SetFlag(fft.HalfSpectrum); | 
|  | fft.fwd(freqBuf, tbuf); | 
|  | VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1)); | 
|  | VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>());  // gross check | 
|  |  | 
|  | fft.ClearFlag(fft.HalfSpectrum); | 
|  | fft.fwd(freqBuf, tbuf); | 
|  | VERIFY((size_t)freqBuf.size() == (size_t)nfft); | 
|  | VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>());  // gross check | 
|  |  | 
|  | if (nfft & 1) return;  // odd FFTs get the wrong size inverse FFT | 
|  |  | 
|  | ScalarVector tbuf2; | 
|  | fft.inv(tbuf2, freqBuf); | 
|  | VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>());  // gross check | 
|  |  | 
|  | // verify that the Unscaled flag takes effect | 
|  | ScalarVector tbuf3; | 
|  | fft.SetFlag(fft.Unscaled); | 
|  |  | 
|  | fft.inv(tbuf3, freqBuf); | 
|  |  | 
|  | for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft); | 
|  |  | 
|  | // for (size_t i=0;i<(size_t) tbuf.size();++i) | 
|  | //     cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - | 
|  | //     tbuf[i] ) <<  endl; | 
|  |  | 
|  | VERIFY(T(dif_rmse(tbuf, tbuf3)) < test_precision<T>());  // gross check | 
|  |  | 
|  | // verify that ClearFlag works | 
|  | fft.ClearFlag(fft.Unscaled); | 
|  | fft.inv(tbuf2, freqBuf); | 
|  | VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>());  // gross check | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void test_scalar(int nfft) { | 
|  | test_scalar_generic<StdVectorContainer, T>(nfft); | 
|  | // test_scalar_generic<EigenVectorContainer,T>(nfft); | 
|  | } | 
|  |  | 
|  | template <int Container, typename T> | 
|  | void test_complex_generic(int nfft) { | 
|  | typedef typename FFT<T>::Complex Complex; | 
|  | typedef typename VectorType<Container, Complex>::type ComplexVector; | 
|  |  | 
|  | FFT<T> fft; | 
|  |  | 
|  | ComplexVector inbuf(nfft); | 
|  | ComplexVector outbuf; | 
|  | ComplexVector buf3; | 
|  | for (int k = 0; k < nfft; ++k) | 
|  | inbuf[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5)); | 
|  | fft.fwd(outbuf, inbuf); | 
|  |  | 
|  | VERIFY(T(fft_rmse(outbuf, inbuf)) < test_precision<T>());  // gross check | 
|  | fft.inv(buf3, outbuf); | 
|  |  | 
|  | VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>());  // gross check | 
|  |  | 
|  | // verify that the Unscaled flag takes effect | 
|  | ComplexVector buf4; | 
|  | fft.SetFlag(fft.Unscaled); | 
|  | fft.inv(buf4, outbuf); | 
|  | for (int k = 0; k < nfft; ++k) buf4[k] *= T(1. / nfft); | 
|  | VERIFY(T(dif_rmse(inbuf, buf4)) < test_precision<T>());  // gross check | 
|  |  | 
|  | // verify that ClearFlag works | 
|  | fft.ClearFlag(fft.Unscaled); | 
|  | fft.inv(buf3, outbuf); | 
|  | VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>());  // gross check | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void test_complex(int nfft) { | 
|  | test_complex_generic<StdVectorContainer, T>(nfft); | 
|  | test_complex_generic<EigenVectorContainer, T>(nfft); | 
|  | } | 
|  |  | 
|  | template <typename T, int nrows, int ncols> | 
|  | void test_complex2d() { | 
|  | typedef typename Eigen::FFT<T>::Complex Complex; | 
|  | FFT<T> fft; | 
|  | Eigen::Matrix<Complex, nrows, ncols> src, src2, dst, dst2; | 
|  |  | 
|  | src = Eigen::Matrix<Complex, nrows, ncols>::Random(); | 
|  | // src =  Eigen::Matrix<Complex,nrows,ncols>::Identity(); | 
|  |  | 
|  | for (int k = 0; k < ncols; k++) { | 
|  | Eigen::Matrix<Complex, nrows, 1> tmpOut; | 
|  | fft.fwd(tmpOut, src.col(k)); | 
|  | dst2.col(k) = tmpOut; | 
|  | } | 
|  |  | 
|  | for (int k = 0; k < nrows; k++) { | 
|  | Eigen::Matrix<Complex, 1, ncols> tmpOut; | 
|  | fft.fwd(tmpOut, dst2.row(k)); | 
|  | dst2.row(k) = tmpOut; | 
|  | } | 
|  |  | 
|  | fft.fwd2(dst.data(), src.data(), ncols, nrows); | 
|  | fft.inv2(src2.data(), dst.data(), ncols, nrows); | 
|  | VERIFY((src - src2).norm() < test_precision<T>()); | 
|  | VERIFY((dst - dst2).norm() < test_precision<T>()); | 
|  | } | 
|  |  | 
|  | inline void test_return_by_value(int len) { | 
|  | VectorXf in; | 
|  | VectorXf in1; | 
|  | in.setRandom(len); | 
|  | VectorXcf out1, out2; | 
|  | FFT<float> fft; | 
|  |  | 
|  | fft.SetFlag(fft.HalfSpectrum); | 
|  |  | 
|  | fft.fwd(out1, in); | 
|  | out2 = fft.fwd(in); | 
|  | VERIFY((out1 - out2).norm() < test_precision<float>()); | 
|  | in1 = fft.inv(out1); | 
|  | VERIFY((in1 - in).norm() < test_precision<float>()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(FFTW) { | 
|  | CALL_SUBTEST(test_return_by_value(32)); | 
|  | CALL_SUBTEST(test_complex<float>(32)); | 
|  | CALL_SUBTEST(test_complex<double>(32)); | 
|  | CALL_SUBTEST(test_complex<float>(256)); | 
|  | CALL_SUBTEST(test_complex<double>(256)); | 
|  | CALL_SUBTEST(test_complex<float>(3 * 8)); | 
|  | CALL_SUBTEST(test_complex<double>(3 * 8)); | 
|  | CALL_SUBTEST(test_complex<float>(5 * 32)); | 
|  | CALL_SUBTEST(test_complex<double>(5 * 32)); | 
|  | CALL_SUBTEST(test_complex<float>(2 * 3 * 4)); | 
|  | CALL_SUBTEST(test_complex<double>(2 * 3 * 4)); | 
|  | CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5)); | 
|  | CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5)); | 
|  | CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5 * 7)); | 
|  | CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5 * 7)); | 
|  |  | 
|  | CALL_SUBTEST(test_scalar<float>(32)); | 
|  | CALL_SUBTEST(test_scalar<double>(32)); | 
|  | CALL_SUBTEST(test_scalar<float>(45)); | 
|  | CALL_SUBTEST(test_scalar<double>(45)); | 
|  | CALL_SUBTEST(test_scalar<float>(50)); | 
|  | CALL_SUBTEST(test_scalar<double>(50)); | 
|  | CALL_SUBTEST(test_scalar<float>(256)); | 
|  | CALL_SUBTEST(test_scalar<double>(256)); | 
|  | CALL_SUBTEST(test_scalar<float>(2 * 3 * 4 * 5 * 7)); | 
|  | CALL_SUBTEST(test_scalar<double>(2 * 3 * 4 * 5 * 7)); | 
|  |  | 
|  | #if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT | 
|  | CALL_SUBTEST(test_complex<long double>(32)); | 
|  | CALL_SUBTEST(test_complex<long double>(256)); | 
|  | CALL_SUBTEST(test_complex<long double>(3 * 8)); | 
|  | CALL_SUBTEST(test_complex<long double>(5 * 32)); | 
|  | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4)); | 
|  | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5)); | 
|  | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5 * 7)); | 
|  |  | 
|  | CALL_SUBTEST(test_scalar<long double>(32)); | 
|  | CALL_SUBTEST(test_scalar<long double>(45)); | 
|  | CALL_SUBTEST(test_scalar<long double>(50)); | 
|  | CALL_SUBTEST(test_scalar<long double>(256)); | 
|  | CALL_SUBTEST(test_scalar<long double>(2 * 3 * 4 * 5 * 7)); | 
|  |  | 
|  | CALL_SUBTEST((test_complex2d<long double, 2 * 3 * 4, 2 * 3 * 4>())); | 
|  | CALL_SUBTEST((test_complex2d<long double, 3 * 4 * 5, 3 * 4 * 5>())); | 
|  | CALL_SUBTEST((test_complex2d<long double, 24, 60>())); | 
|  | CALL_SUBTEST((test_complex2d<long double, 60, 24>())); | 
|  | // fail to build since Eigen limit the stack allocation size,too big here. | 
|  | // CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) ); | 
|  | #endif | 
|  | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT | 
|  | CALL_SUBTEST((test_complex2d<float, 24, 24>())); | 
|  | CALL_SUBTEST((test_complex2d<float, 60, 60>())); | 
|  | CALL_SUBTEST((test_complex2d<float, 24, 60>())); | 
|  | CALL_SUBTEST((test_complex2d<float, 60, 24>())); | 
|  | #endif | 
|  | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT | 
|  | CALL_SUBTEST((test_complex2d<double, 24, 24>())); | 
|  | CALL_SUBTEST((test_complex2d<double, 60, 60>())); | 
|  | CALL_SUBTEST((test_complex2d<double, 24, 60>())); | 
|  | CALL_SUBTEST((test_complex2d<double, 60, 24>())); | 
|  | #endif | 
|  | } |