|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/MatrixFunctions> | 
|  |  | 
|  | // Variant of VERIFY_IS_APPROX which uses absolute error instead of | 
|  | // relative error. | 
|  | #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) | 
|  |  | 
|  | template <typename Type1, typename Type2> | 
|  | inline bool test_isApprox_abs(const Type1& a, const Type2& b) { | 
|  | return ((a - b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); | 
|  | } | 
|  |  | 
|  | // Returns a matrix with eigenvalues clustered around 0, 1 and 2. | 
|  | template <typename MatrixType> | 
|  | MatrixType randomMatrixWithRealEivals(const Index size) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | for (Index i = 0; i < size; ++i) { | 
|  | diag(i, i) = | 
|  | Scalar(RealScalar(internal::random<int>(0, 2))) + internal::random<Scalar>() * Scalar(RealScalar(0.01)); | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | 
|  | struct randomMatrixWithImagEivals { | 
|  | // Returns a matrix with eigenvalues clustered around 0 and +/- i. | 
|  | static MatrixType run(const Index size); | 
|  | }; | 
|  |  | 
|  | // Partial specialization for real matrices | 
|  | template <typename MatrixType> | 
|  | struct randomMatrixWithImagEivals<MatrixType, 0> { | 
|  | static MatrixType run(const Index size) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | Index i = 0; | 
|  | while (i < size) { | 
|  | Index randomInt = internal::random<Index>(-1, 1); | 
|  | if (randomInt == 0 || i == size - 1) { | 
|  | diag(i, i) = internal::random<Scalar>() * Scalar(0.01); | 
|  | ++i; | 
|  | } else { | 
|  | Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); | 
|  | diag(i, i + 1) = alpha; | 
|  | diag(i + 1, i) = -alpha; | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Partial specialization for complex matrices | 
|  | template <typename MatrixType> | 
|  | struct randomMatrixWithImagEivals<MatrixType, 1> { | 
|  | static MatrixType run(const Index size) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | const Scalar imagUnit(0, 1); | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | for (Index i = 0; i < size; ++i) { | 
|  | diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit + | 
|  | internal::random<Scalar>() * Scalar(RealScalar(0.01)); | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMatrixExponential(const MatrixType& A) { | 
|  | typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  |  | 
|  | VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMatrixLogarithm(const MatrixType& A) { | 
|  | typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | MatrixType scaledA; | 
|  | RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); | 
|  | if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) | 
|  | scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; | 
|  | else | 
|  | scaledA = A; | 
|  |  | 
|  | // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X | 
|  | MatrixType expA = scaledA.exp(); | 
|  | MatrixType logExpA = expA.log(); | 
|  | VERIFY_IS_APPROX(logExpA, scaledA); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testHyperbolicFunctions(const MatrixType& A) { | 
|  | // Need to use absolute error because of possible cancellation when | 
|  | // adding/subtracting expA and expmA. | 
|  | VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); | 
|  | VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testGonioFunctions(const MatrixType& A) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  | typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, MatrixType::Options> | 
|  | ComplexMatrix; | 
|  |  | 
|  | ComplexScalar imagUnit(0, 1); | 
|  | ComplexScalar two(2, 0); | 
|  |  | 
|  | ComplexMatrix Ac = A.template cast<ComplexScalar>(); | 
|  |  | 
|  | ComplexMatrix exp_iA = (imagUnit * Ac).exp(); | 
|  | ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); | 
|  |  | 
|  | ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); | 
|  | VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two * imagUnit)); | 
|  |  | 
|  | ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); | 
|  | VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMatrix(const MatrixType& A) { | 
|  | testMatrixExponential(A); | 
|  | testMatrixLogarithm(A); | 
|  | testHyperbolicFunctions(A); | 
|  | testGonioFunctions(A); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMatrixType(const MatrixType& m) { | 
|  | // Matrices with clustered eigenvalue lead to different code paths | 
|  | // in MatrixFunction.h and are thus useful for testing. | 
|  |  | 
|  | const Index size = m.rows(); | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | testMatrix(MatrixType::Random(size, size).eval()); | 
|  | testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); | 
|  | testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMapRef(const MatrixType& A) { | 
|  | // Test if passing Ref and Map objects is possible | 
|  | // (Regression test for Bug #1796) | 
|  | Index size = A.rows(); | 
|  | MatrixType X; | 
|  | X.setRandom(size, size); | 
|  | MatrixType Y(size, size); | 
|  | Ref<MatrixType> R(Y); | 
|  | Ref<const MatrixType> Rc(X); | 
|  | Map<MatrixType> M(Y.data(), size, size); | 
|  | Map<const MatrixType> Mc(X.data(), size, size); | 
|  |  | 
|  | X = X * X;  // make sure sqrt is possible | 
|  | Y = X.sqrt(); | 
|  | R = Rc.sqrt(); | 
|  | M = Mc.sqrt(); | 
|  | Y = X.exp(); | 
|  | R = Rc.exp(); | 
|  | M = Mc.exp(); | 
|  | X = Y;  // make sure log is possible | 
|  | Y = X.log(); | 
|  | R = Rc.log(); | 
|  | M = Mc.log(); | 
|  |  | 
|  | Y = X.cos() + Rc.cos() + Mc.cos(); | 
|  | Y = X.sin() + Rc.sin() + Mc.sin(); | 
|  |  | 
|  | Y = X.cosh() + Rc.cosh() + Mc.cosh(); | 
|  | Y = X.sinh() + Rc.sinh() + Mc.sinh(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(matrix_function) { | 
|  | CALL_SUBTEST_1(testMatrixType(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(testMatrixType(Matrix3cf())); | 
|  | CALL_SUBTEST_3(testMatrixType(MatrixXf(8, 8))); | 
|  | CALL_SUBTEST_4(testMatrixType(Matrix2d())); | 
|  | CALL_SUBTEST_5(testMatrixType(Matrix<double, 5, 5, RowMajor>())); | 
|  | CALL_SUBTEST_6(testMatrixType(Matrix4cd())); | 
|  | CALL_SUBTEST_7(testMatrixType(MatrixXd(13, 13))); | 
|  |  | 
|  | CALL_SUBTEST_1(testMapRef(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(testMapRef(Matrix3cf())); | 
|  | CALL_SUBTEST_3(testMapRef(MatrixXf(8, 8))); | 
|  | CALL_SUBTEST_7(testMapRef(MatrixXd(13, 13))); | 
|  | } |