| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_LDLT_H |
| #define EIGEN_LDLT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename MatrixType, int UpLo> struct LDLT_Traits; |
| } |
| |
| /** \ingroup Cholesky_Module |
| * |
| * \class LDLT |
| * |
| * \brief Robust Cholesky decomposition of a matrix with pivoting |
| * |
| * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
| * The other triangular part won't be read. |
| * |
| * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
| * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
| * is lower triangular with a unit diagonal and D is a diagonal matrix. |
| * |
| * The decomposition uses pivoting to ensure stability, so that L will have |
| * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
| * on D also stabilizes the computation. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
| * decomposition to determine whether a system of equations has a solution. |
| * |
| * \sa MatrixBase::ldlt(), class LLT |
| */ |
| template<typename _MatrixType, int _UpLo> class LDLT |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| UpLo = _UpLo |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; |
| |
| typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| |
| typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via LDLT::compute(const MatrixType&). |
| */ |
| LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa LDLT() |
| */ |
| LDLT(Index size) |
| : m_matrix(size, size), |
| m_transpositions(size), |
| m_temporary(size), |
| m_isInitialized(false) |
| {} |
| |
| /** \brief Constructor with decomposition |
| * |
| * This calculates the decomposition for the input \a matrix. |
| * \sa LDLT(Index size) |
| */ |
| LDLT(const MatrixType& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()), |
| m_transpositions(matrix.rows()), |
| m_temporary(matrix.rows()), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** Clear any existing decomposition |
| * \sa rankUpdate(w,sigma) |
| */ |
| void setZero() |
| { |
| m_isInitialized = false; |
| } |
| |
| /** \returns a view of the upper triangular matrix U */ |
| inline typename Traits::MatrixU matrixU() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getU(m_matrix); |
| } |
| |
| /** \returns a view of the lower triangular matrix L */ |
| inline typename Traits::MatrixL matrixL() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getL(m_matrix); |
| } |
| |
| /** \returns the permutation matrix P as a transposition sequence. |
| */ |
| inline const TranspositionType& transpositionsP() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_transpositions; |
| } |
| |
| /** \returns the coefficients of the diagonal matrix D */ |
| inline Diagonal<const MatrixType> vectorD() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix.diagonal(); |
| } |
| |
| /** \returns true if the matrix is positive (semidefinite) */ |
| inline bool isPositive() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == 1; |
| } |
| |
| #ifdef EIGEN2_SUPPORT |
| inline bool isPositiveDefinite() const |
| { |
| return isPositive(); |
| } |
| #endif |
| |
| /** \returns true if the matrix is negative (semidefinite) */ |
| inline bool isNegative(void) const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == -1; |
| } |
| |
| /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . |
| * |
| * \note_about_checking_solutions |
| * |
| * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ |
| * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, |
| * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then |
| * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the |
| * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function |
| * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. |
| * |
| * \sa MatrixBase::ldlt() |
| */ |
| template<typename Rhs> |
| inline const internal::solve_retval<LDLT, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| eigen_assert(m_matrix.rows()==b.rows() |
| && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); |
| } |
| |
| #ifdef EIGEN2_SUPPORT |
| template<typename OtherDerived, typename ResultType> |
| bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const |
| { |
| *result = this->solve(b); |
| return true; |
| } |
| #endif |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| |
| LDLT& compute(const MatrixType& matrix); |
| |
| template <typename Derived> |
| LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1); |
| |
| /** \returns the internal LDLT decomposition matrix |
| * |
| * TODO: document the storage layout |
| */ |
| inline const MatrixType& matrixLDLT() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix; |
| } |
| |
| MatrixType reconstructedMatrix() const; |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was succesful, |
| * \c NumericalIssue if the matrix.appears to be negative. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return Success; |
| } |
| |
| protected: |
| |
| /** \internal |
| * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
| * The strict upper part is used during the decomposition, the strict lower |
| * part correspond to the coefficients of L (its diagonal is equal to 1 and |
| * is not stored), and the diagonal entries correspond to D. |
| */ |
| MatrixType m_matrix; |
| TranspositionType m_transpositions; |
| TmpMatrixType m_temporary; |
| int m_sign; |
| bool m_isInitialized; |
| }; |
| |
| namespace internal { |
| |
| template<int UpLo> struct ldlt_inplace; |
| |
| template<> struct ldlt_inplace<Lower> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| eigen_assert(mat.rows()==mat.cols()); |
| const Index size = mat.rows(); |
| |
| if (size <= 1) |
| { |
| transpositions.setIdentity(); |
| if(sign) |
| *sign = real(mat.coeff(0,0))>0 ? 1:-1; |
| return true; |
| } |
| |
| RealScalar cutoff(0), biggest_in_corner; |
| |
| for (Index k = 0; k < size; ++k) |
| { |
| // Find largest diagonal element |
| Index index_of_biggest_in_corner; |
| biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
| index_of_biggest_in_corner += k; |
| |
| if(k == 0) |
| { |
| // The biggest overall is the point of reference to which further diagonals |
| // are compared; if any diagonal is negligible compared |
| // to the largest overall, the algorithm bails. |
| cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner); |
| |
| if(sign) |
| *sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1; |
| } |
| |
| // Finish early if the matrix is not full rank. |
| if(biggest_in_corner < cutoff) |
| { |
| for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i; |
| break; |
| } |
| |
| transpositions.coeffRef(k) = index_of_biggest_in_corner; |
| if(k != index_of_biggest_in_corner) |
| { |
| // apply the transposition while taking care to consider only |
| // the lower triangular part |
| Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
| mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
| mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
| std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
| for(int i=k+1;i<index_of_biggest_in_corner;++i) |
| { |
| Scalar tmp = mat.coeffRef(i,k); |
| mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
| mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp); |
| } |
| if(NumTraits<Scalar>::IsComplex) |
| mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k)); |
| } |
| |
| // partition the matrix: |
| // A00 | - | - |
| // lu = A10 | A11 | - |
| // A20 | A21 | A22 |
| Index rs = size - k - 1; |
| Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| |
| if(k>0) |
| { |
| temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint(); |
| mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
| if(rs>0) |
| A21.noalias() -= A20 * temp.head(k); |
| } |
| if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff)) |
| A21 /= mat.coeffRef(k,k); |
| } |
| |
| return true; |
| } |
| |
| // Reference for the algorithm: Davis and Hager, "Multiple Rank |
| // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) |
| // Trivial rearrangements of their computations (Timothy E. Holy) |
| // allow their algorithm to work for rank-1 updates even if the |
| // original matrix is not of full rank. |
| // Here only rank-1 updates are implemented, to reduce the |
| // requirement for intermediate storage and improve accuracy |
| template<typename MatrixType, typename WDerived> |
| static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1) |
| { |
| using internal::isfinite; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| const Index size = mat.rows(); |
| eigen_assert(mat.cols() == size && w.size()==size); |
| |
| RealScalar alpha = 1; |
| |
| // Apply the update |
| for (Index j = 0; j < size; j++) |
| { |
| // Check for termination due to an original decomposition of low-rank |
| if (!(isfinite)(alpha)) |
| break; |
| |
| // Update the diagonal terms |
| RealScalar dj = real(mat.coeff(j,j)); |
| Scalar wj = w.coeff(j); |
| RealScalar swj2 = sigma*abs2(wj); |
| RealScalar gamma = dj*alpha + swj2; |
| |
| mat.coeffRef(j,j) += swj2/alpha; |
| alpha += swj2/dj; |
| |
| |
| // Update the terms of L |
| Index rs = size-j-1; |
| w.tail(rs) -= wj * mat.col(j).tail(rs); |
| if(gamma != 0) |
| mat.col(j).tail(rs) += (sigma*conj(wj)/gamma)*w.tail(rs); |
| } |
| return true; |
| } |
| |
| template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1) |
| { |
| // Apply the permutation to the input w |
| tmp = transpositions * w; |
| |
| return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
| } |
| }; |
| |
| template<> struct ldlt_inplace<Upper> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
| { |
| Transpose<MatrixType> matt(mat); |
| return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
| } |
| |
| template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1) |
| { |
| Transpose<MatrixType> matt(mat); |
| return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
| } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
| { |
| typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return m; } |
| static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
| { |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
| typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
| static inline MatrixU getU(const MatrixType& m) { return m; } |
| }; |
| |
| } // end namespace internal |
| |
| /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
| */ |
| template<typename MatrixType, int _UpLo> |
| LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| |
| m_matrix = a; |
| |
| m_transpositions.resize(size); |
| m_isInitialized = false; |
| m_temporary.resize(size); |
| |
| internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. |
| * \param w a vector to be incorporated into the decomposition. |
| * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
| * \sa setZero() |
| */ |
| template<typename MatrixType, int _UpLo> |
| template<typename Derived> |
| LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma) |
| { |
| const Index size = w.rows(); |
| if (m_isInitialized) |
| { |
| eigen_assert(m_matrix.rows()==size); |
| } |
| else |
| { |
| m_matrix.resize(size,size); |
| m_matrix.setZero(); |
| m_transpositions.resize(size); |
| for (Index i = 0; i < size; i++) |
| m_transpositions.coeffRef(i) = i; |
| m_temporary.resize(size); |
| m_sign = sigma>=0 ? 1 : -1; |
| m_isInitialized = true; |
| } |
| |
| internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
| |
| return *this; |
| } |
| |
| namespace internal { |
| template<typename _MatrixType, int _UpLo, typename Rhs> |
| struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> |
| : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> |
| { |
| typedef LDLT<_MatrixType,_UpLo> LDLTType; |
| EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); |
| // dst = P b |
| dst = dec().transpositionsP() * rhs(); |
| |
| // dst = L^-1 (P b) |
| dec().matrixL().solveInPlace(dst); |
| |
| // dst = D^-1 (L^-1 P b) |
| // more precisely, use pseudo-inverse of D (see bug 241) |
| using std::abs; |
| using std::max; |
| typedef typename LDLTType::MatrixType MatrixType; |
| typedef typename LDLTType::Scalar Scalar; |
| typedef typename LDLTType::RealScalar RealScalar; |
| const Diagonal<const MatrixType> vectorD = dec().vectorD(); |
| RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(), |
| RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS |
| for (Index i = 0; i < vectorD.size(); ++i) { |
| if(abs(vectorD(i)) > tolerance) |
| dst.row(i) /= vectorD(i); |
| else |
| dst.row(i).setZero(); |
| } |
| |
| // dst = L^-T (D^-1 L^-1 P b) |
| dec().matrixU().solveInPlace(dst); |
| |
| // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b |
| dst = dec().transpositionsP().transpose() * dst; |
| } |
| }; |
| } |
| |
| /** \internal use x = ldlt_object.solve(x); |
| * |
| * This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| * |
| * This version avoids a copy when the right hand side matrix b is not |
| * needed anymore. |
| * |
| * \sa LDLT::solve(), MatrixBase::ldlt() |
| */ |
| template<typename MatrixType,int _UpLo> |
| template<typename Derived> |
| bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| const Index size = m_matrix.rows(); |
| eigen_assert(size == bAndX.rows()); |
| |
| bAndX = this->solve(bAndX); |
| |
| return true; |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: P^T L D L^* P. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType, int _UpLo> |
| MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| const Index size = m_matrix.rows(); |
| MatrixType res(size,size); |
| |
| // P |
| res.setIdentity(); |
| res = transpositionsP() * res; |
| // L^* P |
| res = matrixU() * res; |
| // D(L^*P) |
| res = vectorD().asDiagonal() * res; |
| // L(DL^*P) |
| res = matrixL() * res; |
| // P^T (LDL^*P) |
| res = transpositionsP().transpose() * res; |
| |
| return res; |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| */ |
| template<typename MatrixType, unsigned int UpLo> |
| inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| SelfAdjointView<MatrixType, UpLo>::ldlt() const |
| { |
| return LDLT<PlainObject,UpLo>(m_matrix); |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| */ |
| template<typename Derived> |
| inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::ldlt() const |
| { |
| return LDLT<PlainObject>(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LDLT_H |