| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DENSEBASE_H |
| #define EIGEN_DENSEBASE_H |
| |
| namespace Eigen { |
| |
| /** \class DenseBase |
| * \ingroup Core_Module |
| * |
| * \brief Base class for all dense matrices, vectors, and arrays |
| * |
| * This class is the base that is inherited by all dense objects (matrix, vector, arrays, |
| * and related expression types). The common Eigen API for dense objects is contained in this class. |
| * |
| * \tparam Derived is the derived type, e.g., a matrix type or an expression. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. |
| * |
| * \sa \ref TopicClassHierarchy |
| */ |
| template<typename Derived> class DenseBase |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| : public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar, |
| typename NumTraits<typename internal::traits<Derived>::Scalar>::Real> |
| #else |
| : public DenseCoeffsBase<Derived> |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| { |
| public: |
| using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar, |
| typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*; |
| |
| class InnerIterator; |
| |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| |
| /** \brief The type of indices |
| * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. |
| * \sa \ref TopicPreprocessorDirectives. |
| */ |
| typedef typename internal::traits<Derived>::Index Index; |
| |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| typedef DenseCoeffsBase<Derived> Base; |
| using Base::derived; |
| using Base::const_cast_derived; |
| using Base::rows; |
| using Base::cols; |
| using Base::size; |
| using Base::rowIndexByOuterInner; |
| using Base::colIndexByOuterInner; |
| using Base::coeff; |
| using Base::coeffByOuterInner; |
| using Base::packet; |
| using Base::packetByOuterInner; |
| using Base::writePacket; |
| using Base::writePacketByOuterInner; |
| using Base::coeffRef; |
| using Base::coeffRefByOuterInner; |
| using Base::copyCoeff; |
| using Base::copyCoeffByOuterInner; |
| using Base::copyPacket; |
| using Base::copyPacketByOuterInner; |
| using Base::operator(); |
| using Base::operator[]; |
| using Base::x; |
| using Base::y; |
| using Base::z; |
| using Base::w; |
| using Base::stride; |
| using Base::innerStride; |
| using Base::outerStride; |
| using Base::rowStride; |
| using Base::colStride; |
| typedef typename Base::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| |
| RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, |
| /**< The number of rows at compile-time. This is just a copy of the value provided |
| * by the \a Derived type. If a value is not known at compile-time, |
| * it is set to the \a Dynamic constant. |
| * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ |
| |
| ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, |
| /**< The number of columns at compile-time. This is just a copy of the value provided |
| * by the \a Derived type. If a value is not known at compile-time, |
| * it is set to the \a Dynamic constant. |
| * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ |
| |
| |
| SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, |
| internal::traits<Derived>::ColsAtCompileTime>::ret), |
| /**< This is equal to the number of coefficients, i.e. the number of |
| * rows times the number of columns, or to \a Dynamic if this is not |
| * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ |
| |
| MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, |
| /**< This value is equal to the maximum possible number of rows that this expression |
| * might have. If this expression might have an arbitrarily high number of rows, |
| * this value is set to \a Dynamic. |
| * |
| * This value is useful to know when evaluating an expression, in order to determine |
| * whether it is possible to avoid doing a dynamic memory allocation. |
| * |
| * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime |
| */ |
| |
| MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, |
| /**< This value is equal to the maximum possible number of columns that this expression |
| * might have. If this expression might have an arbitrarily high number of columns, |
| * this value is set to \a Dynamic. |
| * |
| * This value is useful to know when evaluating an expression, in order to determine |
| * whether it is possible to avoid doing a dynamic memory allocation. |
| * |
| * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime |
| */ |
| |
| MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime, |
| internal::traits<Derived>::MaxColsAtCompileTime>::ret), |
| /**< This value is equal to the maximum possible number of coefficients that this expression |
| * might have. If this expression might have an arbitrarily high number of coefficients, |
| * this value is set to \a Dynamic. |
| * |
| * This value is useful to know when evaluating an expression, in order to determine |
| * whether it is possible to avoid doing a dynamic memory allocation. |
| * |
| * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime |
| */ |
| |
| IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1 |
| || internal::traits<Derived>::MaxColsAtCompileTime == 1, |
| /**< This is set to true if either the number of rows or the number of |
| * columns is known at compile-time to be equal to 1. Indeed, in that case, |
| * we are dealing with a column-vector (if there is only one column) or with |
| * a row-vector (if there is only one row). */ |
| |
| Flags = internal::traits<Derived>::Flags, |
| /**< This stores expression \ref flags flags which may or may not be inherited by new expressions |
| * constructed from this one. See the \ref flags "list of flags". |
| */ |
| |
| IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */ |
| |
| InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) |
| : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), |
| |
| CoeffReadCost = internal::traits<Derived>::CoeffReadCost, |
| /**< This is a rough measure of how expensive it is to read one coefficient from |
| * this expression. |
| */ |
| |
| InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret, |
| OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret |
| }; |
| |
| enum { ThisConstantIsPrivateInPlainObjectBase }; |
| |
| /** \returns the number of nonzero coefficients which is in practice the number |
| * of stored coefficients. */ |
| inline Index nonZeros() const { return size(); } |
| /** \returns true if either the number of rows or the number of columns is equal to 1. |
| * In other words, this function returns |
| * \code rows()==1 || cols()==1 \endcode |
| * \sa rows(), cols(), IsVectorAtCompileTime. */ |
| |
| /** \returns the outer size. |
| * |
| * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension |
| * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a |
| * column-major matrix, and the number of rows for a row-major matrix. */ |
| Index outerSize() const |
| { |
| return IsVectorAtCompileTime ? 1 |
| : int(IsRowMajor) ? this->rows() : this->cols(); |
| } |
| |
| /** \returns the inner size. |
| * |
| * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension |
| * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a |
| * column-major matrix, and the number of columns for a row-major matrix. */ |
| Index innerSize() const |
| { |
| return IsVectorAtCompileTime ? this->size() |
| : int(IsRowMajor) ? this->cols() : this->rows(); |
| } |
| |
| /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are |
| * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does |
| * nothing else. |
| */ |
| void resize(Index newSize) |
| { |
| EIGEN_ONLY_USED_FOR_DEBUG(newSize); |
| eigen_assert(newSize == this->size() |
| && "DenseBase::resize() does not actually allow to resize."); |
| } |
| /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are |
| * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does |
| * nothing else. |
| */ |
| void resize(Index nbRows, Index nbCols) |
| { |
| EIGEN_ONLY_USED_FOR_DEBUG(nbRows); |
| EIGEN_ONLY_USED_FOR_DEBUG(nbCols); |
| eigen_assert(nbRows == this->rows() && nbCols == this->cols() |
| && "DenseBase::resize() does not actually allow to resize."); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| |
| /** \internal Represents a matrix with all coefficients equal to one another*/ |
| typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType; |
| /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */ |
| typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType; |
| /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ |
| typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType; |
| /** \internal the return type of MatrixBase::eigenvalues() */ |
| typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType; |
| |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| /** Copies \a other into *this. \returns a reference to *this. */ |
| template<typename OtherDerived> |
| Derived& operator=(const DenseBase<OtherDerived>& other); |
| |
| /** Special case of the template operator=, in order to prevent the compiler |
| * from generating a default operator= (issue hit with g++ 4.1) |
| */ |
| Derived& operator=(const DenseBase& other); |
| |
| template<typename OtherDerived> |
| Derived& operator=(const EigenBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| Derived& operator+=(const EigenBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| Derived& operator-=(const EigenBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| Derived& operator=(const ReturnByValue<OtherDerived>& func); |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ |
| template<typename OtherDerived> |
| Derived& lazyAssign(const DenseBase<OtherDerived>& other); |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| CommaInitializer<Derived> operator<< (const Scalar& s); |
| |
| template<unsigned int Added,unsigned int Removed> |
| const Flagged<Derived, Added, Removed> flagged() const; |
| |
| template<typename OtherDerived> |
| CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other); |
| |
| Eigen::Transpose<Derived> transpose(); |
| typedef const Transpose<const Derived> ConstTransposeReturnType; |
| ConstTransposeReturnType transpose() const; |
| void transposeInPlace(); |
| #ifndef EIGEN_NO_DEBUG |
| protected: |
| template<typename OtherDerived> |
| void checkTransposeAliasing(const OtherDerived& other) const; |
| public: |
| #endif |
| |
| typedef VectorBlock<Derived> SegmentReturnType; |
| typedef const VectorBlock<const Derived> ConstSegmentReturnType; |
| template<int Size> struct FixedSegmentReturnType { typedef VectorBlock<Derived, Size> Type; }; |
| template<int Size> struct ConstFixedSegmentReturnType { typedef const VectorBlock<const Derived, Size> Type; }; |
| |
| // Note: The "DenseBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations. |
| SegmentReturnType segment(Index start, Index size); |
| typename DenseBase::ConstSegmentReturnType segment(Index start, Index size) const; |
| |
| SegmentReturnType head(Index size); |
| typename DenseBase::ConstSegmentReturnType head(Index size) const; |
| |
| SegmentReturnType tail(Index size); |
| typename DenseBase::ConstSegmentReturnType tail(Index size) const; |
| |
| template<int Size> typename FixedSegmentReturnType<Size>::Type head(); |
| template<int Size> typename ConstFixedSegmentReturnType<Size>::Type head() const; |
| |
| template<int Size> typename FixedSegmentReturnType<Size>::Type tail(); |
| template<int Size> typename ConstFixedSegmentReturnType<Size>::Type tail() const; |
| |
| template<int Size> typename FixedSegmentReturnType<Size>::Type segment(Index start); |
| template<int Size> typename ConstFixedSegmentReturnType<Size>::Type segment(Index start) const; |
| |
| static const ConstantReturnType |
| Constant(Index rows, Index cols, const Scalar& value); |
| static const ConstantReturnType |
| Constant(Index size, const Scalar& value); |
| static const ConstantReturnType |
| Constant(const Scalar& value); |
| |
| static const SequentialLinSpacedReturnType |
| LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high); |
| static const RandomAccessLinSpacedReturnType |
| LinSpaced(Index size, const Scalar& low, const Scalar& high); |
| static const SequentialLinSpacedReturnType |
| LinSpaced(Sequential_t, const Scalar& low, const Scalar& high); |
| static const RandomAccessLinSpacedReturnType |
| LinSpaced(const Scalar& low, const Scalar& high); |
| |
| template<typename CustomNullaryOp> |
| static const CwiseNullaryOp<CustomNullaryOp, Derived> |
| NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); |
| template<typename CustomNullaryOp> |
| static const CwiseNullaryOp<CustomNullaryOp, Derived> |
| NullaryExpr(Index size, const CustomNullaryOp& func); |
| template<typename CustomNullaryOp> |
| static const CwiseNullaryOp<CustomNullaryOp, Derived> |
| NullaryExpr(const CustomNullaryOp& func); |
| |
| static const ConstantReturnType Zero(Index rows, Index cols); |
| static const ConstantReturnType Zero(Index size); |
| static const ConstantReturnType Zero(); |
| static const ConstantReturnType Ones(Index rows, Index cols); |
| static const ConstantReturnType Ones(Index size); |
| static const ConstantReturnType Ones(); |
| |
| void fill(const Scalar& value); |
| Derived& setConstant(const Scalar& value); |
| Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); |
| Derived& setLinSpaced(const Scalar& low, const Scalar& high); |
| Derived& setZero(); |
| Derived& setOnes(); |
| Derived& setRandom(); |
| |
| template<typename OtherDerived> |
| bool isApprox(const DenseBase<OtherDerived>& other, |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isMuchSmallerThan(const RealScalar& other, |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| template<typename OtherDerived> |
| bool isMuchSmallerThan(const DenseBase<OtherDerived>& other, |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| inline Derived& operator*=(const Scalar& other); |
| inline Derived& operator/=(const Scalar& other); |
| |
| typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType; |
| /** \returns the matrix or vector obtained by evaluating this expression. |
| * |
| * Notice that in the case of a plain matrix or vector (not an expression) this function just returns |
| * a const reference, in order to avoid a useless copy. |
| */ |
| EIGEN_STRONG_INLINE EvalReturnType eval() const |
| { |
| // Even though MSVC does not honor strong inlining when the return type |
| // is a dynamic matrix, we desperately need strong inlining for fixed |
| // size types on MSVC. |
| return typename internal::eval<Derived>::type(derived()); |
| } |
| |
| /** swaps *this with the expression \a other. |
| * |
| */ |
| template<typename OtherDerived> |
| void swap(const DenseBase<OtherDerived>& other, |
| int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase) |
| { |
| SwapWrapper<Derived>(derived()).lazyAssign(other.derived()); |
| } |
| |
| /** swaps *this with the matrix or array \a other. |
| * |
| */ |
| template<typename OtherDerived> |
| void swap(PlainObjectBase<OtherDerived>& other) |
| { |
| SwapWrapper<Derived>(derived()).lazyAssign(other.derived()); |
| } |
| |
| |
| inline const NestByValue<Derived> nestByValue() const; |
| inline const ForceAlignedAccess<Derived> forceAlignedAccess() const; |
| inline ForceAlignedAccess<Derived> forceAlignedAccess(); |
| template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const; |
| template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf(); |
| |
| Scalar sum() const; |
| Scalar mean() const; |
| Scalar trace() const; |
| |
| Scalar prod() const; |
| |
| typename internal::traits<Derived>::Scalar minCoeff() const; |
| typename internal::traits<Derived>::Scalar maxCoeff() const; |
| |
| template<typename IndexType> |
| typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const; |
| template<typename IndexType> |
| typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const; |
| template<typename IndexType> |
| typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const; |
| template<typename IndexType> |
| typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const; |
| |
| template<typename BinaryOp> |
| typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type |
| redux(const BinaryOp& func) const; |
| |
| template<typename Visitor> |
| void visit(Visitor& func) const; |
| |
| inline const WithFormat<Derived> format(const IOFormat& fmt) const; |
| |
| /** \returns the unique coefficient of a 1x1 expression */ |
| CoeffReturnType value() const |
| { |
| EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) |
| eigen_assert(this->rows() == 1 && this->cols() == 1); |
| return derived().coeff(0,0); |
| } |
| |
| /////////// Array module /////////// |
| |
| bool all(void) const; |
| bool any(void) const; |
| Index count() const; |
| |
| typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType; |
| typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType; |
| typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType; |
| typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType; |
| |
| ConstRowwiseReturnType rowwise() const; |
| RowwiseReturnType rowwise(); |
| ConstColwiseReturnType colwise() const; |
| ColwiseReturnType colwise(); |
| |
| static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols); |
| static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size); |
| static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(); |
| |
| template<typename ThenDerived,typename ElseDerived> |
| const Select<Derived,ThenDerived,ElseDerived> |
| select(const DenseBase<ThenDerived>& thenMatrix, |
| const DenseBase<ElseDerived>& elseMatrix) const; |
| |
| template<typename ThenDerived> |
| inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType> |
| select(const DenseBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const; |
| |
| template<typename ElseDerived> |
| inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived > |
| select(typename ElseDerived::Scalar thenScalar, const DenseBase<ElseDerived>& elseMatrix) const; |
| |
| template<int p> RealScalar lpNorm() const; |
| |
| template<int RowFactor, int ColFactor> |
| const Replicate<Derived,RowFactor,ColFactor> replicate() const; |
| const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const; |
| |
| typedef Reverse<Derived, BothDirections> ReverseReturnType; |
| typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType; |
| ReverseReturnType reverse(); |
| ConstReverseReturnType reverse() const; |
| void reverseInPlace(); |
| |
| #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase |
| # include "../plugins/BlockMethods.h" |
| # ifdef EIGEN_DENSEBASE_PLUGIN |
| # include EIGEN_DENSEBASE_PLUGIN |
| # endif |
| #undef EIGEN_CURRENT_STORAGE_BASE_CLASS |
| |
| #ifdef EIGEN2_SUPPORT |
| |
| Block<Derived> corner(CornerType type, Index cRows, Index cCols); |
| const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const; |
| template<int CRows, int CCols> |
| Block<Derived, CRows, CCols> corner(CornerType type); |
| template<int CRows, int CCols> |
| const Block<Derived, CRows, CCols> corner(CornerType type) const; |
| |
| #endif // EIGEN2_SUPPORT |
| |
| |
| // disable the use of evalTo for dense objects with a nice compilation error |
| template<typename Dest> inline void evalTo(Dest& ) const |
| { |
| EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); |
| } |
| |
| protected: |
| /** Default constructor. Do nothing. */ |
| DenseBase() |
| { |
| /* Just checks for self-consistency of the flags. |
| * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down |
| */ |
| #ifdef EIGEN_INTERNAL_DEBUGGING |
| EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor)) |
| && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))), |
| INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION) |
| #endif |
| } |
| |
| private: |
| explicit DenseBase(int); |
| DenseBase(int,int); |
| template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&); |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_DENSEBASE_H |