| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DENSESTORAGEBASE_H |
| #define EIGEN_DENSESTORAGEBASE_H |
| |
| #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO |
| # define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0); |
| #else |
| # define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| #endif |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow { |
| template<typename Index> |
| static EIGEN_ALWAYS_INLINE void run(Index, Index) |
| { |
| } |
| }; |
| |
| template<> struct check_rows_cols_for_overflow<Dynamic> { |
| template<typename Index> |
| static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) |
| { |
| // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 |
| // we assume Index is signed |
| Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed |
| bool error = (rows == 0 || cols == 0) ? false |
| : (rows > max_index / cols); |
| if (error) |
| throw_std_bad_alloc(); |
| } |
| }; |
| |
| template <typename Derived, typename OtherDerived = Derived, bool IsVector = bool(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl; |
| |
| template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl; |
| |
| } // end namespace internal |
| |
| /** \class PlainObjectBase |
| * \brief %Dense storage base class for matrices and arrays. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. |
| * |
| * \sa \ref TopicClassHierarchy |
| */ |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| namespace internal { |
| |
| // this is a warkaround to doxygen not being able to understand the inheritence logic |
| // when it is hidden by the dense_xpr_base helper struct. |
| template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {}; |
| /** This class is just a workaround for Doxygen and it does not not actually exist. */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {}; |
| /** This class is just a workaround for Doxygen and it does not not actually exist. */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| : public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {}; |
| |
| } // namespace internal |
| |
| template<typename Derived> |
| class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived> |
| #else |
| template<typename Derived> |
| class PlainObjectBase : public internal::dense_xpr_base<Derived>::type |
| #endif |
| { |
| public: |
| enum { Options = internal::traits<Derived>::Options }; |
| typedef typename internal::dense_xpr_base<Derived>::type Base; |
| |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::Index Index; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Derived DenseType; |
| |
| using Base::RowsAtCompileTime; |
| using Base::ColsAtCompileTime; |
| using Base::SizeAtCompileTime; |
| using Base::MaxRowsAtCompileTime; |
| using Base::MaxColsAtCompileTime; |
| using Base::MaxSizeAtCompileTime; |
| using Base::IsVectorAtCompileTime; |
| using Base::Flags; |
| |
| template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map; |
| friend class Eigen::Map<Derived, Unaligned>; |
| typedef Eigen::Map<Derived, Unaligned> MapType; |
| friend class Eigen::Map<const Derived, Unaligned>; |
| typedef const Eigen::Map<const Derived, Unaligned> ConstMapType; |
| friend class Eigen::Map<Derived, Aligned>; |
| typedef Eigen::Map<Derived, Aligned> AlignedMapType; |
| friend class Eigen::Map<const Derived, Aligned>; |
| typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType; |
| template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; }; |
| template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; }; |
| template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; }; |
| template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; }; |
| |
| protected: |
| DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage; |
| |
| public: |
| enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 }; |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| |
| Base& base() { return *static_cast<Base*>(this); } |
| const Base& base() const { return *static_cast<const Base*>(this); } |
| |
| EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } |
| EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const |
| { |
| return m_storage.data()[index]; |
| } |
| |
| EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) |
| { |
| return m_storage.data()[index]; |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[colId + rowId * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[rowId + colId * m_storage.rows()]; |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const |
| { |
| return m_storage.data()[index]; |
| } |
| |
| /** \internal */ |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const |
| { |
| return internal::ploadt<PacketScalar, LoadMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? colId + rowId * m_storage.cols() |
| : rowId + colId * m_storage.rows())); |
| } |
| |
| /** \internal */ |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index index) const |
| { |
| return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index); |
| } |
| |
| /** \internal */ |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) |
| { |
| internal::pstoret<Scalar, PacketScalar, StoreMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? colId + rowId * m_storage.cols() |
| : rowId + colId * m_storage.rows()), val); |
| } |
| |
| /** \internal */ |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) |
| { |
| internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val); |
| } |
| |
| /** \returns a const pointer to the data array of this matrix */ |
| EIGEN_STRONG_INLINE const Scalar *data() const |
| { return m_storage.data(); } |
| |
| /** \returns a pointer to the data array of this matrix */ |
| EIGEN_STRONG_INLINE Scalar *data() |
| { return m_storage.data(); } |
| |
| /** Resizes \c *this to a \a rows x \a cols matrix. |
| * |
| * This method is intended for dynamic-size matrices, although it is legal to call it on any |
| * matrix as long as fixed dimensions are left unchanged. If you only want to change the number |
| * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). |
| * |
| * If the current number of coefficients of \c *this exactly matches the |
| * product \a rows * \a cols, then no memory allocation is performed and |
| * the current values are left unchanged. In all other cases, including |
| * shrinking, the data is reallocated and all previous values are lost. |
| * |
| * Example: \include Matrix_resize_int_int.cpp |
| * Output: \verbinclude Matrix_resize_int_int.out |
| * |
| * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) |
| */ |
| EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols) |
| { |
| eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,nbRows==RowsAtCompileTime) |
| && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,nbCols==ColsAtCompileTime) |
| && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,nbRows<=MaxRowsAtCompileTime) |
| && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,nbCols<=MaxColsAtCompileTime) |
| && nbRows>=0 && nbCols>=0 && "Invalid sizes when resizing a matrix or array."); |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols); |
| #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO |
| Index size = nbRows*nbCols; |
| bool size_changed = size != this->size(); |
| m_storage.resize(size, nbRows, nbCols); |
| if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| #else |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols); |
| m_storage.resize(nbRows*nbCols, nbRows, nbCols); |
| #endif |
| } |
| |
| /** Resizes \c *this to a vector of length \a size |
| * |
| * \only_for_vectors. This method does not work for |
| * partially dynamic matrices when the static dimension is anything other |
| * than 1. For example it will not work with Matrix<double, 2, Dynamic>. |
| * |
| * Example: \include Matrix_resize_int.cpp |
| * Output: \verbinclude Matrix_resize_int.out |
| * |
| * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) |
| */ |
| inline void resize(Index size) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) |
| eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0); |
| #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO |
| bool size_changed = size != this->size(); |
| #endif |
| if(RowsAtCompileTime == 1) |
| m_storage.resize(size, 1, size); |
| else |
| m_storage.resize(size, size, 1); |
| #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO |
| if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| #endif |
| } |
| |
| /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange |
| * as in the example below. |
| * |
| * Example: \include Matrix_resize_NoChange_int.cpp |
| * Output: \verbinclude Matrix_resize_NoChange_int.out |
| * |
| * \sa resize(Index,Index) |
| */ |
| inline void resize(NoChange_t, Index nbCols) |
| { |
| resize(rows(), nbCols); |
| } |
| |
| /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange |
| * as in the example below. |
| * |
| * Example: \include Matrix_resize_int_NoChange.cpp |
| * Output: \verbinclude Matrix_resize_int_NoChange.out |
| * |
| * \sa resize(Index,Index) |
| */ |
| inline void resize(Index nbRows, NoChange_t) |
| { |
| resize(nbRows, cols()); |
| } |
| |
| /** Resizes \c *this to have the same dimensions as \a other. |
| * Takes care of doing all the checking that's needed. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other) |
| { |
| const OtherDerived& other = _other.derived(); |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols()); |
| const Index othersize = other.rows()*other.cols(); |
| if(RowsAtCompileTime == 1) |
| { |
| eigen_assert(other.rows() == 1 || other.cols() == 1); |
| resize(1, othersize); |
| } |
| else if(ColsAtCompileTime == 1) |
| { |
| eigen_assert(other.rows() == 1 || other.cols() == 1); |
| resize(othersize, 1); |
| } |
| else resize(other.rows(), other.cols()); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * The method is intended for matrices of dynamic size. If you only want to change the number |
| * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or |
| * conservativeResize(Index, NoChange_t). |
| * |
| * Matrices are resized relative to the top-left element. In case values need to be |
| * appended to the matrix they will be uninitialized. |
| */ |
| EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, Index nbCols) |
| { |
| internal::conservative_resize_like_impl<Derived>::run(*this, nbRows, nbCols); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * As opposed to conservativeResize(Index rows, Index cols), this version leaves |
| * the number of columns unchanged. |
| * |
| * In case the matrix is growing, new rows will be uninitialized. |
| */ |
| EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, NoChange_t) |
| { |
| // Note: see the comment in conservativeResize(Index,Index) |
| conservativeResize(nbRows, cols()); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. |
| * |
| * As opposed to conservativeResize(Index rows, Index cols), this version leaves |
| * the number of rows unchanged. |
| * |
| * In case the matrix is growing, new columns will be uninitialized. |
| */ |
| EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index nbCols) |
| { |
| // Note: see the comment in conservativeResize(Index,Index) |
| conservativeResize(rows(), nbCols); |
| } |
| |
| /** Resizes the vector to \a size while retaining old values. |
| * |
| * \only_for_vectors. This method does not work for |
| * partially dynamic matrices when the static dimension is anything other |
| * than 1. For example it will not work with Matrix<double, 2, Dynamic>. |
| * |
| * When values are appended, they will be uninitialized. |
| */ |
| EIGEN_STRONG_INLINE void conservativeResize(Index size) |
| { |
| internal::conservative_resize_like_impl<Derived>::run(*this, size); |
| } |
| |
| /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. |
| * |
| * The method is intended for matrices of dynamic size. If you only want to change the number |
| * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or |
| * conservativeResize(Index, NoChange_t). |
| * |
| * Matrices are resized relative to the top-left element. In case values need to be |
| * appended to the matrix they will copied from \c other. |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other) |
| { |
| internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) |
| { |
| return _set(other); |
| } |
| |
| /** \sa MatrixBase::lazyAssign() */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other) |
| { |
| _resize_to_match(other); |
| return Base::lazyAssign(other.derived()); |
| } |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func) |
| { |
| resize(func.rows(), func.cols()); |
| return Base::operator=(func); |
| } |
| |
| EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage() |
| { |
| // _check_template_params(); |
| // EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| // FIXME is it still needed ? |
| /** \internal */ |
| PlainObjectBase(internal::constructor_without_unaligned_array_assert) |
| : m_storage(internal::constructor_without_unaligned_array_assert()) |
| { |
| // _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| } |
| #endif |
| |
| EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols) |
| : m_storage(a_size, nbRows, nbCols) |
| { |
| // _check_template_params(); |
| // EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| /** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&) |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other) |
| { |
| _resize_to_match(other); |
| Base::operator=(other.derived()); |
| return this->derived(); |
| } |
| |
| /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other) |
| : m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) |
| { |
| _check_template_params(); |
| internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.derived().rows(), other.derived().cols()); |
| Base::operator=(other.derived()); |
| } |
| |
| /** \name Map |
| * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, |
| * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned |
| * \a data pointers. |
| * |
| * \see class Map |
| */ |
| //@{ |
| static inline ConstMapType Map(const Scalar* data) |
| { return ConstMapType(data); } |
| static inline MapType Map(Scalar* data) |
| { return MapType(data); } |
| static inline ConstMapType Map(const Scalar* data, Index size) |
| { return ConstMapType(data, size); } |
| static inline MapType Map(Scalar* data, Index size) |
| { return MapType(data, size); } |
| static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) |
| { return ConstMapType(data, rows, cols); } |
| static inline MapType Map(Scalar* data, Index rows, Index cols) |
| { return MapType(data, rows, cols); } |
| |
| static inline ConstAlignedMapType MapAligned(const Scalar* data) |
| { return ConstAlignedMapType(data); } |
| static inline AlignedMapType MapAligned(Scalar* data) |
| { return AlignedMapType(data); } |
| static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) |
| { return ConstAlignedMapType(data, size); } |
| static inline AlignedMapType MapAligned(Scalar* data, Index size) |
| { return AlignedMapType(data, size); } |
| static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) |
| { return ConstAlignedMapType(data, rows, cols); } |
| static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) |
| { return AlignedMapType(data, rows, cols); } |
| |
| template<int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride) |
| { return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride) |
| { return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) |
| { return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } |
| |
| template<int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride) |
| { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride) |
| { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) |
| { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } |
| template<int Outer, int Inner> |
| static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) |
| { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } |
| //@} |
| |
| using Base::setConstant; |
| Derived& setConstant(Index size, const Scalar& value); |
| Derived& setConstant(Index rows, Index cols, const Scalar& value); |
| |
| using Base::setZero; |
| Derived& setZero(Index size); |
| Derived& setZero(Index rows, Index cols); |
| |
| using Base::setOnes; |
| Derived& setOnes(Index size); |
| Derived& setOnes(Index rows, Index cols); |
| |
| using Base::setRandom; |
| Derived& setRandom(Index size); |
| Derived& setRandom(Index rows, Index cols); |
| |
| #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN |
| #include EIGEN_PLAINOBJECTBASE_PLUGIN |
| #endif |
| |
| protected: |
| /** \internal Resizes *this in preparation for assigning \a other to it. |
| * Takes care of doing all the checking that's needed. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other) |
| { |
| #ifdef EIGEN_NO_AUTOMATIC_RESIZING |
| eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) |
| : (rows() == other.rows() && cols() == other.cols()))) |
| && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); |
| #else |
| resizeLike(other); |
| #endif |
| } |
| |
| /** |
| * \brief Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() |
| * |
| * \internal |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other) |
| { |
| _set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type()); |
| return this->derived(); |
| } |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); } |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); } |
| |
| /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which |
| * is the case when creating a new matrix) so one can enforce lazy evaluation. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set() |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other) |
| { |
| // I don't think we need this resize call since the lazyAssign will anyways resize |
| // and lazyAssign will be called by the assign selector. |
| //_resize_to_match(other); |
| // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because |
| // it wouldn't allow to copy a row-vector into a column-vector. |
| return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived()); |
| } |
| |
| template<typename T0, typename T1> |
| EIGEN_STRONG_INLINE void _init2(Index nbRows, Index nbCols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0) |
| { |
| EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) && |
| bool(NumTraits<T1>::IsInteger), |
| FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) |
| resize(nbRows,nbCols); |
| } |
| template<typename T0, typename T1> |
| EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) |
| m_storage.data()[0] = val0; |
| m_storage.data()[1] = val1; |
| } |
| |
| template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> |
| friend struct internal::matrix_swap_impl; |
| |
| /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the |
| * data pointers. |
| */ |
| template<typename OtherDerived> |
| void _swap(DenseBase<OtherDerived> const & other) |
| { |
| enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic }; |
| internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived()); |
| } |
| |
| public: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| static EIGEN_STRONG_INLINE void _check_template_params() |
| { |
| EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) |
| && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) |
| && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) |
| && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) |
| && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) |
| && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) |
| && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) |
| && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) |
| && (Options & (DontAlign|RowMajor)) == Options), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| } |
| #endif |
| |
| private: |
| enum { ThisConstantIsPrivateInPlainObjectBase }; |
| }; |
| |
| template <typename Derived, typename OtherDerived, bool IsVector> |
| struct internal::conservative_resize_like_impl |
| { |
| typedef typename Derived::Index Index; |
| static void run(DenseBase<Derived>& _this, Index rows, Index cols) |
| { |
| if (_this.rows() == rows && _this.cols() == cols) return; |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) |
| |
| if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows |
| (!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns |
| { |
| internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols); |
| _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); |
| } |
| else |
| { |
| // The storage order does not allow us to use reallocation. |
| typename Derived::PlainObject tmp(rows,cols); |
| const Index common_rows = (std::min)(rows, _this.rows()); |
| const Index common_cols = (std::min)(cols, _this.cols()); |
| tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); |
| _this.derived().swap(tmp); |
| } |
| } |
| |
| static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) |
| { |
| if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; |
| |
| // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), |
| // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the |
| // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or |
| // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like |
| // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) |
| EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) |
| |
| if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows |
| (!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns |
| { |
| const Index new_rows = other.rows() - _this.rows(); |
| const Index new_cols = other.cols() - _this.cols(); |
| _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); |
| if (new_rows>0) |
| _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); |
| else if (new_cols>0) |
| _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); |
| } |
| else |
| { |
| // The storage order does not allow us to use reallocation. |
| typename Derived::PlainObject tmp(other); |
| const Index common_rows = (std::min)(tmp.rows(), _this.rows()); |
| const Index common_cols = (std::min)(tmp.cols(), _this.cols()); |
| tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); |
| _this.derived().swap(tmp); |
| } |
| } |
| }; |
| |
| namespace internal { |
| |
| template <typename Derived, typename OtherDerived> |
| struct conservative_resize_like_impl<Derived,OtherDerived,true> |
| { |
| typedef typename Derived::Index Index; |
| static void run(DenseBase<Derived>& _this, Index size) |
| { |
| const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; |
| const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; |
| _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); |
| } |
| |
| static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) |
| { |
| if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; |
| |
| const Index num_new_elements = other.size() - _this.size(); |
| |
| const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); |
| const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; |
| _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); |
| |
| if (num_new_elements > 0) |
| _this.tail(num_new_elements) = other.tail(num_new_elements); |
| } |
| }; |
| |
| template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> |
| struct matrix_swap_impl |
| { |
| static inline void run(MatrixTypeA& a, MatrixTypeB& b) |
| { |
| a.base().swap(b); |
| } |
| }; |
| |
| template<typename MatrixTypeA, typename MatrixTypeB> |
| struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true> |
| { |
| static inline void run(MatrixTypeA& a, MatrixTypeB& b) |
| { |
| static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_DENSESTORAGEBASE_H |