| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway |
| |
| namespace Eigen { |
| |
| template<typename Other, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_quaternion_assign_impl; |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Quaternion |
| * |
| * \brief The quaternion class used to represent 3D orientations and rotations |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * |
| * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
| * orientations and rotations of objects in three dimensions. Compared to other representations |
| * like Euler angles or 3x3 matrices, quatertions offer the following advantages: |
| * \li \b compact storage (4 scalars) |
| * \li \b efficient to compose (28 flops), |
| * \li \b stable spherical interpolation |
| * |
| * The following two typedefs are provided for convenience: |
| * \li \c Quaternionf for \c float |
| * \li \c Quaterniond for \c double |
| * |
| * \sa class AngleAxis, class Transform |
| */ |
| |
| template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> > |
| { |
| typedef _Scalar Scalar; |
| }; |
| |
| template<typename _Scalar> |
| class Quaternion : public RotationBase<Quaternion<_Scalar>,3> |
| { |
| typedef RotationBase<Quaternion<_Scalar>,3> Base; |
| |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) |
| |
| using Base::operator*; |
| |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| |
| /** the type of the Coefficients 4-vector */ |
| typedef Matrix<Scalar, 4, 1> Coefficients; |
| /** the type of a 3D vector */ |
| typedef Matrix<Scalar,3,1> Vector3; |
| /** the equivalent rotation matrix type */ |
| typedef Matrix<Scalar,3,3> Matrix3; |
| /** the equivalent angle-axis type */ |
| typedef AngleAxis<Scalar> AngleAxisType; |
| |
| /** \returns the \c x coefficient */ |
| inline Scalar x() const { return m_coeffs.coeff(0); } |
| /** \returns the \c y coefficient */ |
| inline Scalar y() const { return m_coeffs.coeff(1); } |
| /** \returns the \c z coefficient */ |
| inline Scalar z() const { return m_coeffs.coeff(2); } |
| /** \returns the \c w coefficient */ |
| inline Scalar w() const { return m_coeffs.coeff(3); } |
| |
| /** \returns a reference to the \c x coefficient */ |
| inline Scalar& x() { return m_coeffs.coeffRef(0); } |
| /** \returns a reference to the \c y coefficient */ |
| inline Scalar& y() { return m_coeffs.coeffRef(1); } |
| /** \returns a reference to the \c z coefficient */ |
| inline Scalar& z() { return m_coeffs.coeffRef(2); } |
| /** \returns a reference to the \c w coefficient */ |
| inline Scalar& w() { return m_coeffs.coeffRef(3); } |
| |
| /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
| inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); } |
| |
| /** \returns a vector expression of the imaginary part (x,y,z) */ |
| inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); } |
| |
| /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
| inline const Coefficients& coeffs() const { return m_coeffs; } |
| |
| /** \returns a vector expression of the coefficients (x,y,z,w) */ |
| inline Coefficients& coeffs() { return m_coeffs; } |
| |
| /** Default constructor leaving the quaternion uninitialized. */ |
| inline Quaternion() {} |
| |
| /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
| * its four coefficients \a w, \a x, \a y and \a z. |
| * |
| * \warning Note the order of the arguments: the real \a w coefficient first, |
| * while internally the coefficients are stored in the following order: |
| * [\c x, \c y, \c z, \c w] |
| */ |
| inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) |
| { m_coeffs << x, y, z, w; } |
| |
| /** Copy constructor */ |
| inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } |
| |
| /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
| explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
| |
| /** Constructs and initializes a quaternion from either: |
| * - a rotation matrix expression, |
| * - a 4D vector expression representing quaternion coefficients. |
| * \sa operator=(MatrixBase<Derived>) |
| */ |
| template<typename Derived> |
| explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } |
| |
| Quaternion& operator=(const Quaternion& other); |
| Quaternion& operator=(const AngleAxisType& aa); |
| template<typename Derived> |
| Quaternion& operator=(const MatrixBase<Derived>& m); |
| |
| /** \returns a quaternion representing an identity rotation |
| * \sa MatrixBase::Identity() |
| */ |
| static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } |
| |
| /** \sa Quaternion::Identity(), MatrixBase::setIdentity() |
| */ |
| inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } |
| |
| /** \returns the squared norm of the quaternion's coefficients |
| * \sa Quaternion::norm(), MatrixBase::squaredNorm() |
| */ |
| inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } |
| |
| /** \returns the norm of the quaternion's coefficients |
| * \sa Quaternion::squaredNorm(), MatrixBase::norm() |
| */ |
| inline Scalar norm() const { return m_coeffs.norm(); } |
| |
| /** Normalizes the quaternion \c *this |
| * \sa normalized(), MatrixBase::normalize() */ |
| inline void normalize() { m_coeffs.normalize(); } |
| /** \returns a normalized version of \c *this |
| * \sa normalize(), MatrixBase::normalized() */ |
| inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } |
| |
| /** \returns the dot product of \c *this and \a other |
| * Geometrically speaking, the dot product of two unit quaternions |
| * corresponds to the cosine of half the angle between the two rotations. |
| * \sa angularDistance() |
| */ |
| inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } |
| |
| inline Scalar angularDistance(const Quaternion& other) const; |
| |
| Matrix3 toRotationMatrix(void) const; |
| |
| template<typename Derived1, typename Derived2> |
| Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| |
| inline Quaternion operator* (const Quaternion& q) const; |
| inline Quaternion& operator*= (const Quaternion& q); |
| |
| Quaternion inverse(void) const; |
| Quaternion conjugate(void) const; |
| |
| Quaternion slerp(Scalar t, const Quaternion& other) const; |
| |
| template<typename Derived> |
| Vector3 operator* (const MatrixBase<Derived>& vec) const; |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const |
| { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit Quaternion(const Quaternion<OtherScalarType>& other) |
| { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| { return m_coeffs.isApprox(other.m_coeffs, prec); } |
| |
| protected: |
| Coefficients m_coeffs; |
| }; |
| |
| /** \ingroup Geometry_Module |
| * single precision quaternion type */ |
| typedef Quaternion<float> Quaternionf; |
| /** \ingroup Geometry_Module |
| * double precision quaternion type */ |
| typedef Quaternion<double> Quaterniond; |
| |
| // Generic Quaternion * Quaternion product |
| template<typename Scalar> inline Quaternion<Scalar> |
| ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b) |
| { |
| return Quaternion<Scalar> |
| ( |
| a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
| a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
| a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
| a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() |
| ); |
| } |
| |
| /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const |
| { |
| return ei_quaternion_product(*this,other); |
| } |
| |
| /** \sa operator*(Quaternion) */ |
| template <typename Scalar> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other) |
| { |
| return (*this = *this * other); |
| } |
| |
| /** Rotation of a vector by a quaternion. |
| * \remarks If the quaternion is used to rotate several points (>1) |
| * then it is much more efficient to first convert it to a 3x3 Matrix. |
| * Comparison of the operation cost for n transformations: |
| * - Quaternion: 30n |
| * - Via a Matrix3: 24 + 15n |
| */ |
| template <typename Scalar> |
| template<typename Derived> |
| inline typename Quaternion<Scalar>::Vector3 |
| Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const |
| { |
| // Note that this algorithm comes from the optimization by hand |
| // of the conversion to a Matrix followed by a Matrix/Vector product. |
| // It appears to be much faster than the common algorithm found |
| // in the litterature (30 versus 39 flops). It also requires two |
| // Vector3 as temporaries. |
| Vector3 uv; |
| uv = 2 * this->vec().cross(v); |
| return v + this->w() * uv + this->vec().cross(uv); |
| } |
| |
| template<typename Scalar> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other) |
| { |
| m_coeffs = other.m_coeffs; |
| return *this; |
| } |
| |
| /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
| */ |
| template<typename Scalar> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa) |
| { |
| Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
| this->w() = ei_cos(ha); |
| this->vec() = ei_sin(ha) * aa.axis(); |
| return *this; |
| } |
| |
| /** Set \c *this from the expression \a xpr: |
| * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
| * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| * and \a xpr is converted to a quaternion |
| */ |
| template<typename Scalar> |
| template<typename Derived> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr) |
| { |
| ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived()); |
| return *this; |
| } |
| |
| /** Convert the quaternion to a 3x3 rotation matrix */ |
| template<typename Scalar> |
| inline typename Quaternion<Scalar>::Matrix3 |
| Quaternion<Scalar>::toRotationMatrix(void) const |
| { |
| // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
| // if not inlined then the cost of the return by value is huge ~ +35%, |
| // however, not inlining this function is an order of magnitude slower, so |
| // it has to be inlined, and so the return by value is not an issue |
| Matrix3 res; |
| |
| const Scalar tx = Scalar(2)*this->x(); |
| const Scalar ty = Scalar(2)*this->y(); |
| const Scalar tz = Scalar(2)*this->z(); |
| const Scalar twx = tx*this->w(); |
| const Scalar twy = ty*this->w(); |
| const Scalar twz = tz*this->w(); |
| const Scalar txx = tx*this->x(); |
| const Scalar txy = ty*this->x(); |
| const Scalar txz = tz*this->x(); |
| const Scalar tyy = ty*this->y(); |
| const Scalar tyz = tz*this->y(); |
| const Scalar tzz = tz*this->z(); |
| |
| res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); |
| res.coeffRef(0,1) = txy-twz; |
| res.coeffRef(0,2) = txz+twy; |
| res.coeffRef(1,0) = txy+twz; |
| res.coeffRef(1,1) = Scalar(1)-(txx+tzz); |
| res.coeffRef(1,2) = tyz-twx; |
| res.coeffRef(2,0) = txz-twy; |
| res.coeffRef(2,1) = tyz+twx; |
| res.coeffRef(2,2) = Scalar(1)-(txx+tyy); |
| |
| return res; |
| } |
| |
| /** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. |
| * |
| * \returns a reference to *this. |
| * |
| * Note that the two input vectors do \b not have to be normalized. |
| */ |
| template<typename Scalar> |
| template<typename Derived1, typename Derived2> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
| { |
| Vector3 v0 = a.normalized(); |
| Vector3 v1 = b.normalized(); |
| Scalar c = v0.eigen2_dot(v1); |
| |
| // if dot == 1, vectors are the same |
| if (ei_isApprox(c,Scalar(1))) |
| { |
| // set to identity |
| this->w() = 1; this->vec().setZero(); |
| return *this; |
| } |
| // if dot == -1, vectors are opposites |
| if (ei_isApprox(c,Scalar(-1))) |
| { |
| this->vec() = v0.unitOrthogonal(); |
| this->w() = 0; |
| return *this; |
| } |
| |
| Vector3 axis = v0.cross(v1); |
| Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); |
| Scalar invs = Scalar(1)/s; |
| this->vec() = axis * invs; |
| this->w() = s * Scalar(0.5); |
| |
| return *this; |
| } |
| |
| /** \returns the multiplicative inverse of \c *this |
| * Note that in most cases, i.e., if you simply want the opposite rotation, |
| * and/or the quaternion is normalized, then it is enough to use the conjugate. |
| * |
| * \sa Quaternion::conjugate() |
| */ |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const |
| { |
| // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
| Scalar n2 = this->squaredNorm(); |
| if (n2 > 0) |
| return Quaternion(conjugate().coeffs() / n2); |
| else |
| { |
| // return an invalid result to flag the error |
| return Quaternion(Coefficients::Zero()); |
| } |
| } |
| |
| /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
| * if the quaternion is normalized. |
| * The conjugate of a quaternion represents the opposite rotation. |
| * |
| * \sa Quaternion::inverse() |
| */ |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const |
| { |
| return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); |
| } |
| |
| /** \returns the angle (in radian) between two rotations |
| * \sa eigen2_dot() |
| */ |
| template <typename Scalar> |
| inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const |
| { |
| double d = ei_abs(this->eigen2_dot(other)); |
| if (d>=1.0) |
| return 0; |
| return Scalar(2) * std::acos(d); |
| } |
| |
| /** \returns the spherical linear interpolation between the two quaternions |
| * \c *this and \a other at the parameter \a t |
| */ |
| template <typename Scalar> |
| Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const |
| { |
| static const Scalar one = Scalar(1) - machine_epsilon<Scalar>(); |
| Scalar d = this->eigen2_dot(other); |
| Scalar absD = ei_abs(d); |
| |
| Scalar scale0; |
| Scalar scale1; |
| |
| if (absD>=one) |
| { |
| scale0 = Scalar(1) - t; |
| scale1 = t; |
| } |
| else |
| { |
| // theta is the angle between the 2 quaternions |
| Scalar theta = std::acos(absD); |
| Scalar sinTheta = ei_sin(theta); |
| |
| scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; |
| scale1 = ei_sin( ( t * theta) ) / sinTheta; |
| if (d<0) |
| scale1 = -scale1; |
| } |
| |
| return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
| } |
| |
| // set from a rotation matrix |
| template<typename Other> |
| struct ei_quaternion_assign_impl<Other,3,3> |
| { |
| typedef typename Other::Scalar Scalar; |
| static inline void run(Quaternion<Scalar>& q, const Other& mat) |
| { |
| // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| // Ken Shoemake, 1987 SIGGRAPH course notes |
| Scalar t = mat.trace(); |
| if (t > 0) |
| { |
| t = ei_sqrt(t + Scalar(1.0)); |
| q.w() = Scalar(0.5)*t; |
| t = Scalar(0.5)/t; |
| q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; |
| q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; |
| q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; |
| } |
| else |
| { |
| int i = 0; |
| if (mat.coeff(1,1) > mat.coeff(0,0)) |
| i = 1; |
| if (mat.coeff(2,2) > mat.coeff(i,i)) |
| i = 2; |
| int j = (i+1)%3; |
| int k = (j+1)%3; |
| |
| t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); |
| q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
| t = Scalar(0.5)/t; |
| q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; |
| q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; |
| q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; |
| } |
| } |
| }; |
| |
| // set from a vector of coefficients assumed to be a quaternion |
| template<typename Other> |
| struct ei_quaternion_assign_impl<Other,4,1> |
| { |
| typedef typename Other::Scalar Scalar; |
| static inline void run(Quaternion<Scalar>& q, const Other& vec) |
| { |
| q.coeffs() = vec; |
| } |
| }; |
| |
| } // end namespace Eigen |