| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ORTHOMETHODS_H |
| #define EIGEN_ORTHOMETHODS_H |
| |
| namespace Eigen { |
| |
| /** \geometry_module |
| * |
| * \returns the cross product of \c *this and \a other |
| * |
| * Here is a very good explanation of cross-product: http://xkcd.com/199/ |
| * \sa MatrixBase::cross3() |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type |
| MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
| |
| // Note that there is no need for an expression here since the compiler |
| // optimize such a small temporary very well (even within a complex expression) |
| typename internal::nested<Derived,2>::type lhs(derived()); |
| typename internal::nested<OtherDerived,2>::type rhs(other.derived()); |
| return typename cross_product_return_type<OtherDerived>::type( |
| internal::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
| internal::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
| internal::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) |
| ); |
| } |
| |
| namespace internal { |
| |
| template< int Arch,typename VectorLhs,typename VectorRhs, |
| typename Scalar = typename VectorLhs::Scalar, |
| bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> |
| struct cross3_impl { |
| static inline typename internal::plain_matrix_type<VectorLhs>::type |
| run(const VectorLhs& lhs, const VectorRhs& rhs) |
| { |
| return typename internal::plain_matrix_type<VectorLhs>::type( |
| internal::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
| internal::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
| internal::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), |
| 0 |
| ); |
| } |
| }; |
| |
| } |
| |
| /** \geometry_module |
| * |
| * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients |
| * |
| * The size of \c *this and \a other must be four. This function is especially useful |
| * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. |
| * |
| * \sa MatrixBase::cross() |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| inline typename MatrixBase<Derived>::PlainObject |
| MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) |
| |
| typedef typename internal::nested<Derived,2>::type DerivedNested; |
| typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested; |
| const DerivedNested lhs(derived()); |
| const OtherDerivedNested rhs(other.derived()); |
| |
| return internal::cross3_impl<Architecture::Target, |
| typename internal::remove_all<DerivedNested>::type, |
| typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); |
| } |
| |
| /** \returns a matrix expression of the cross product of each column or row |
| * of the referenced expression with the \a other vector. |
| * |
| * The referenced matrix must have one dimension equal to 3. |
| * The result matrix has the same dimensions than the referenced one. |
| * |
| * \geometry_module |
| * |
| * \sa MatrixBase::cross() */ |
| template<typename ExpressionType, int Direction> |
| template<typename OtherDerived> |
| const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType |
| VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
| EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| |
| CrossReturnType res(_expression().rows(),_expression().cols()); |
| if(Direction==Vertical) |
| { |
| eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); |
| res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate(); |
| res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate(); |
| res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate(); |
| } |
| else |
| { |
| eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); |
| res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate(); |
| res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate(); |
| res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate(); |
| } |
| return res; |
| } |
| |
| namespace internal { |
| |
| template<typename Derived, int Size = Derived::SizeAtCompileTime> |
| struct unitOrthogonal_selector |
| { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| typedef typename traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename Derived::Index Index; |
| typedef Matrix<Scalar,2,1> Vector2; |
| static inline VectorType run(const Derived& src) |
| { |
| VectorType perp = VectorType::Zero(src.size()); |
| Index maxi = 0; |
| Index sndi = 0; |
| src.cwiseAbs().maxCoeff(&maxi); |
| if (maxi==0) |
| sndi = 1; |
| RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); |
| perp.coeffRef(maxi) = -conj(src.coeff(sndi)) * invnm; |
| perp.coeffRef(sndi) = conj(src.coeff(maxi)) * invnm; |
| |
| return perp; |
| } |
| }; |
| |
| template<typename Derived> |
| struct unitOrthogonal_selector<Derived,3> |
| { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| typedef typename traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| static inline VectorType run(const Derived& src) |
| { |
| VectorType perp; |
| /* Let us compute the crossed product of *this with a vector |
| * that is not too close to being colinear to *this. |
| */ |
| |
| /* unless the x and y coords are both close to zero, we can |
| * simply take ( -y, x, 0 ) and normalize it. |
| */ |
| if((!isMuchSmallerThan(src.x(), src.z())) |
| || (!isMuchSmallerThan(src.y(), src.z()))) |
| { |
| RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); |
| perp.coeffRef(0) = -conj(src.y())*invnm; |
| perp.coeffRef(1) = conj(src.x())*invnm; |
| perp.coeffRef(2) = 0; |
| } |
| /* if both x and y are close to zero, then the vector is close |
| * to the z-axis, so it's far from colinear to the x-axis for instance. |
| * So we take the crossed product with (1,0,0) and normalize it. |
| */ |
| else |
| { |
| RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); |
| perp.coeffRef(0) = 0; |
| perp.coeffRef(1) = -conj(src.z())*invnm; |
| perp.coeffRef(2) = conj(src.y())*invnm; |
| } |
| |
| return perp; |
| } |
| }; |
| |
| template<typename Derived> |
| struct unitOrthogonal_selector<Derived,2> |
| { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| static inline VectorType run(const Derived& src) |
| { return VectorType(-conj(src.y()), conj(src.x())).normalized(); } |
| }; |
| |
| } // end namespace internal |
| |
| /** \returns a unit vector which is orthogonal to \c *this |
| * |
| * The size of \c *this must be at least 2. If the size is exactly 2, |
| * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). |
| * |
| * \sa cross() |
| */ |
| template<typename Derived> |
| typename MatrixBase<Derived>::PlainObject |
| MatrixBase<Derived>::unitOrthogonal() const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| return internal::unitOrthogonal_selector<Derived>::run(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ORTHOMETHODS_H |