| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ROTATIONBASE_H |
| #define EIGEN_ROTATIONBASE_H |
| |
| namespace Eigen { |
| |
| // forward declaration |
| namespace internal { |
| template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime> |
| struct rotation_base_generic_product_selector; |
| } |
| |
| /** \class RotationBase |
| * |
| * \brief Common base class for compact rotation representations |
| * |
| * \param Derived is the derived type, i.e., a rotation type |
| * \param _Dim the dimension of the space |
| */ |
| template<typename Derived, int _Dim> |
| class RotationBase |
| { |
| public: |
| enum { Dim = _Dim }; |
| /** the scalar type of the coefficients */ |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| |
| /** corresponding linear transformation matrix type */ |
| typedef Matrix<Scalar,Dim,Dim> RotationMatrixType; |
| typedef Matrix<Scalar,Dim,1> VectorType; |
| |
| public: |
| inline const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| inline Derived& derived() { return *static_cast<Derived*>(this); } |
| |
| /** \returns an equivalent rotation matrix */ |
| inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } |
| |
| /** \returns an equivalent rotation matrix |
| * This function is added to be conform with the Transform class' naming scheme. |
| */ |
| inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } |
| |
| /** \returns the inverse rotation */ |
| inline Derived inverse() const { return derived().inverse(); } |
| |
| /** \returns the concatenation of the rotation \c *this with a translation \a t */ |
| inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const |
| { return Transform<Scalar,Dim,Isometry>(*this) * t; } |
| |
| /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ |
| inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const |
| { return toRotationMatrix() * s.factor(); } |
| |
| /** \returns the concatenation of the rotation \c *this with a generic expression \a e |
| * \a e can be: |
| * - a DimxDim linear transformation matrix |
| * - a DimxDim diagonal matrix (axis aligned scaling) |
| * - a vector of size Dim |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType |
| operator*(const EigenBase<OtherDerived>& e) const |
| { return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); } |
| |
| /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ |
| template<typename OtherDerived> friend |
| inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r) |
| { return l.derived() * r.toRotationMatrix(); } |
| |
| /** \returns the concatenation of a scaling \a l with the rotation \a r */ |
| friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r) |
| { |
| Transform<Scalar,Dim,Affine> res(r); |
| res.linear().applyOnTheLeft(l); |
| return res; |
| } |
| |
| /** \returns the concatenation of the rotation \c *this with a transformation \a t */ |
| template<int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const |
| { return toRotationMatrix() * t; } |
| |
| template<typename OtherVectorType> |
| inline VectorType _transformVector(const OtherVectorType& v) const |
| { return toRotationMatrix() * v; } |
| }; |
| |
| namespace internal { |
| |
| // implementation of the generic product rotation * matrix |
| template<typename RotationDerived, typename MatrixType> |
| struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false> |
| { |
| enum { Dim = RotationDerived::Dim }; |
| typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType; |
| static inline ReturnType run(const RotationDerived& r, const MatrixType& m) |
| { return r.toRotationMatrix() * m; } |
| }; |
| |
| template<typename RotationDerived, typename Scalar, int Dim, int MaxDim> |
| struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false > |
| { |
| typedef Transform<Scalar,Dim,Affine> ReturnType; |
| static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m) |
| { |
| ReturnType res(r); |
| res.linear() *= m; |
| return res; |
| } |
| }; |
| |
| template<typename RotationDerived,typename OtherVectorType> |
| struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true> |
| { |
| enum { Dim = RotationDerived::Dim }; |
| typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType; |
| static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) |
| { |
| return r._transformVector(v); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \geometry_module |
| * |
| * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r |
| */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> |
| template<typename OtherDerived> |
| Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> |
| ::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r) |
| { |
| EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) |
| *this = r.toRotationMatrix(); |
| } |
| |
| /** \geometry_module |
| * |
| * \brief Set a Dim x Dim rotation matrix from the rotation \a r |
| */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> |
| template<typename OtherDerived> |
| Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& |
| Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> |
| ::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r) |
| { |
| EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) |
| return *this = r.toRotationMatrix(); |
| } |
| |
| namespace internal { |
| |
| /** \internal |
| * |
| * Helper function to return an arbitrary rotation object to a rotation matrix. |
| * |
| * \param Scalar the numeric type of the matrix coefficients |
| * \param Dim the dimension of the current space |
| * |
| * It returns a Dim x Dim fixed size matrix. |
| * |
| * Default specializations are provided for: |
| * - any scalar type (2D), |
| * - any matrix expression, |
| * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) |
| * |
| * Currently toRotationMatrix is only used by Transform. |
| * |
| * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis |
| */ |
| template<typename Scalar, int Dim> |
| static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return Rotation2D<Scalar>(s).toRotationMatrix(); |
| } |
| |
| template<typename Scalar, int Dim, typename OtherDerived> |
| static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r) |
| { |
| return r.toRotationMatrix(); |
| } |
| |
| template<typename Scalar, int Dim, typename OtherDerived> |
| static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat) |
| { |
| EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, |
| YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return mat; |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ROTATIONBASE_H |