| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CONJUGATE_GRADIENT_H |
| #define EIGEN_CONJUGATE_GRADIENT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Low-level conjugate gradient algorithm |
| * \param mat The matrix A |
| * \param rhs The right hand side vector b |
| * \param x On input and initial solution, on output the computed solution. |
| * \param precond A preconditioner being able to efficiently solve for an |
| * approximation of Ax=b (regardless of b) |
| * \param iters On input the max number of iteration, on output the number of performed iterations. |
| * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| */ |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| EIGEN_DONT_INLINE |
| void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, |
| const Preconditioner& precond, int& iters, |
| typename Dest::RealScalar& tol_error) |
| { |
| using std::sqrt; |
| using std::abs; |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| |
| RealScalar tol = tol_error; |
| int maxIters = iters; |
| |
| int n = mat.cols(); |
| |
| VectorType residual = rhs - mat * x; //initial residual |
| VectorType p(n); |
| |
| p = precond.solve(residual); //initial search direction |
| |
| VectorType z(n), tmp(n); |
| RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM |
| RealScalar rhsNorm2 = rhs.squaredNorm(); |
| RealScalar residualNorm2 = 0; |
| RealScalar threshold = tol*tol*rhsNorm2; |
| int i = 0; |
| while(i < maxIters) |
| { |
| tmp.noalias() = mat * p; // the bottleneck of the algorithm |
| |
| Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir |
| x += alpha * p; // update solution |
| residual -= alpha * tmp; // update residue |
| |
| residualNorm2 = residual.squaredNorm(); |
| if(residualNorm2 < threshold) |
| break; |
| |
| z = precond.solve(residual); // approximately solve for "A z = residual" |
| |
| RealScalar absOld = absNew; |
| absNew = internal::real(residual.dot(z)); // update the absolute value of r |
| RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction |
| p = z + beta * p; // update search direction |
| i++; |
| } |
| tol_error = sqrt(residualNorm2 / rhsNorm2); |
| iters = i; |
| } |
| |
| } |
| |
| template< typename _MatrixType, int _UpLo=Lower, |
| typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
| class ConjugateGradient; |
| |
| namespace internal { |
| |
| template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
| struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > |
| { |
| typedef _MatrixType MatrixType; |
| typedef _Preconditioner Preconditioner; |
| }; |
| |
| } |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A conjugate gradient solver for sparse self-adjoint problems |
| * |
| * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm. |
| * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| * \code |
| * int n = 10000; |
| * VectorXd x(n), b(n); |
| * SparseMatrix<double> A(n,n); |
| * // fill A and b |
| * ConjugateGradient<SparseMatrix<double> > cg; |
| * cg.compute(A); |
| * x = cg.solve(b); |
| * std::cout << "#iterations: " << cg.iterations() << std::endl; |
| * std::cout << "estimated error: " << cg.error() << std::endl; |
| * // update b, and solve again |
| * x = cg.solve(b); |
| * \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. Here is a step by |
| * step execution example starting with a random guess and printing the evolution |
| * of the estimated error: |
| * * \code |
| * x = VectorXd::Random(n); |
| * cg.setMaxIterations(1); |
| * int i = 0; |
| * do { |
| * x = cg.solveWithGuess(b,x); |
| * std::cout << i << " : " << cg.error() << std::endl; |
| * ++i; |
| * } while (cg.info()!=Success && i<100); |
| * \endcode |
| * Note that such a step by step excution is slightly slower. |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
| class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > |
| { |
| typedef IterativeSolverBase<ConjugateGradient> Base; |
| using Base::mp_matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| public: |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef _Preconditioner Preconditioner; |
| |
| enum { |
| UpLo = _UpLo |
| }; |
| |
| public: |
| |
| /** Default constructor. */ |
| ConjugateGradient() : Base() {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| ConjugateGradient(const MatrixType& A) : Base(A) {} |
| |
| ~ConjugateGradient() {} |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| * \a x0 as an initial solution. |
| * |
| * \sa compute() |
| */ |
| template<typename Rhs,typename Guess> |
| inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess> |
| solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| { |
| eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
| eigen_assert(Base::rows()==b.rows() |
| && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval_with_guess |
| <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0); |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solveWithGuess(const Rhs& b, Dest& x) const |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| for(int j=0; j<b.cols(); ++j) |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| typename Dest::ColXpr xj(x,j); |
| internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj, |
| Base::m_preconditioner, m_iterations, m_error); |
| } |
| |
| m_isInitialized = true; |
| m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve(const Rhs& b, Dest& x) const |
| { |
| x.setOnes(); |
| _solveWithGuess(b,x); |
| } |
| |
| protected: |
| |
| }; |
| |
| |
| namespace internal { |
| |
| template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs> |
| struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
| : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
| { |
| typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec; |
| EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec()._solve(rhs(),dst); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CONJUGATE_GRADIENT_H |