| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2010 Vincent Lejeune |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_QR_H |
| #define EIGEN_QR_H |
| |
| namespace Eigen { |
| |
| /** \ingroup QR_Module |
| * |
| * |
| * \class HouseholderQR |
| * |
| * \brief Householder QR decomposition of a matrix |
| * |
| * \param MatrixType the type of the matrix of which we are computing the QR decomposition |
| * |
| * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R |
| * such that |
| * \f[ |
| * \mathbf{A} = \mathbf{Q} \, \mathbf{R} |
| * \f] |
| * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. |
| * The result is stored in a compact way compatible with LAPACK. |
| * |
| * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. |
| * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. |
| * |
| * This Householder QR decomposition is faster, but less numerically stable and less feature-full than |
| * FullPivHouseholderQR or ColPivHouseholderQR. |
| * |
| * \sa MatrixBase::householderQr() |
| */ |
| template<typename _MatrixType> class HouseholderQR |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
| typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
| typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via HouseholderQR::compute(const MatrixType&). |
| */ |
| HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa HouseholderQR() |
| */ |
| HouseholderQR(Index rows, Index cols) |
| : m_qr(rows, cols), |
| m_hCoeffs((std::min)(rows,cols)), |
| m_temp(cols), |
| m_isInitialized(false) {} |
| |
| HouseholderQR(const MatrixType& matrix) |
| : m_qr(matrix.rows(), matrix.cols()), |
| m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
| m_temp(matrix.cols()), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the QR decomposition, if any exists. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \returns a solution. |
| * |
| * \note The case where b is a matrix is not yet implemented. Also, this |
| * code is space inefficient. |
| * |
| * \note_about_checking_solutions |
| * |
| * \note_about_arbitrary_choice_of_solution |
| * |
| * Example: \include HouseholderQR_solve.cpp |
| * Output: \verbinclude HouseholderQR_solve.out |
| */ |
| template<typename Rhs> |
| inline const internal::solve_retval<HouseholderQR, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived()); |
| } |
| |
| /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. |
| * |
| * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. |
| * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: |
| * |
| * Example: \include HouseholderQR_householderQ.cpp |
| * Output: \verbinclude HouseholderQR_householderQ.out |
| */ |
| HouseholderSequenceType householderQ() const |
| { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
| } |
| |
| /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| * in a LAPACK-compatible way. |
| */ |
| const MatrixType& matrixQR() const |
| { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| HouseholderQR& compute(const MatrixType& matrix); |
| |
| /** \returns the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar absDeterminant() const; |
| |
| /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa absDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar logAbsDeterminant() const; |
| |
| inline Index rows() const { return m_qr.rows(); } |
| inline Index cols() const { return m_qr.cols(); } |
| const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| |
| protected: |
| MatrixType m_qr; |
| HCoeffsType m_hCoeffs; |
| RowVectorType m_temp; |
| bool m_isInitialized; |
| }; |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const |
| { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return internal::abs(m_qr.diagonal().prod()); |
| } |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const |
| { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return m_qr.diagonal().cwiseAbs().array().log().sum(); |
| } |
| |
| namespace internal { |
| |
| /** \internal */ |
| template<typename MatrixQR, typename HCoeffs> |
| void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) |
| { |
| typedef typename MatrixQR::Index Index; |
| typedef typename MatrixQR::Scalar Scalar; |
| typedef typename MatrixQR::RealScalar RealScalar; |
| Index rows = mat.rows(); |
| Index cols = mat.cols(); |
| Index size = (std::min)(rows,cols); |
| |
| eigen_assert(hCoeffs.size() == size); |
| |
| typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; |
| TempType tempVector; |
| if(tempData==0) |
| { |
| tempVector.resize(cols); |
| tempData = tempVector.data(); |
| } |
| |
| for(Index k = 0; k < size; ++k) |
| { |
| Index remainingRows = rows - k; |
| Index remainingCols = cols - k - 1; |
| |
| RealScalar beta; |
| mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); |
| mat.coeffRef(k,k) = beta; |
| |
| // apply H to remaining part of m_qr from the left |
| mat.bottomRightCorner(remainingRows, remainingCols) |
| .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); |
| } |
| } |
| |
| /** \internal */ |
| template<typename MatrixQR, typename HCoeffs> |
| void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, |
| typename MatrixQR::Index maxBlockSize=32, |
| typename MatrixQR::Scalar* tempData = 0) |
| { |
| typedef typename MatrixQR::Index Index; |
| typedef typename MatrixQR::Scalar Scalar; |
| typedef typename MatrixQR::RealScalar RealScalar; |
| typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; |
| |
| Index rows = mat.rows(); |
| Index cols = mat.cols(); |
| Index size = (std::min)(rows, cols); |
| |
| typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; |
| TempType tempVector; |
| if(tempData==0) |
| { |
| tempVector.resize(cols); |
| tempData = tempVector.data(); |
| } |
| |
| Index blockSize = (std::min)(maxBlockSize,size); |
| |
| Index k = 0; |
| for (k = 0; k < size; k += blockSize) |
| { |
| Index bs = (std::min)(size-k,blockSize); // actual size of the block |
| Index tcols = cols - k - bs; // trailing columns |
| Index brows = rows-k; // rows of the block |
| |
| // partition the matrix: |
| // A00 | A01 | A02 |
| // mat = A10 | A11 | A12 |
| // A20 | A21 | A22 |
| // and performs the qr dec of [A11^T A12^T]^T |
| // and update [A21^T A22^T]^T using level 3 operations. |
| // Finally, the algorithm continue on A22 |
| |
| BlockType A11_21 = mat.block(k,k,brows,bs); |
| Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); |
| |
| householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); |
| |
| if(tcols) |
| { |
| BlockType A21_22 = mat.block(k,k+bs,brows,tcols); |
| apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); |
| } |
| } |
| } |
| |
| template<typename _MatrixType, typename Rhs> |
| struct solve_retval<HouseholderQR<_MatrixType>, Rhs> |
| : solve_retval_base<HouseholderQR<_MatrixType>, Rhs> |
| { |
| EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| const Index rows = dec().rows(), cols = dec().cols(); |
| const Index rank = (std::min)(rows, cols); |
| eigen_assert(rhs().rows() == rows); |
| |
| typename Rhs::PlainObject c(rhs()); |
| |
| // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
| c.applyOnTheLeft(householderSequence( |
| dec().matrixQR().leftCols(rank), |
| dec().hCoeffs().head(rank)).transpose() |
| ); |
| |
| dec().matrixQR() |
| .topLeftCorner(rank, rank) |
| .template triangularView<Upper>() |
| .solveInPlace(c.topRows(rank)); |
| |
| dst.topRows(rank) = c.topRows(rank); |
| dst.bottomRows(cols-rank).setZero(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| template<typename MatrixType> |
| HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) |
| { |
| Index rows = matrix.rows(); |
| Index cols = matrix.cols(); |
| Index size = (std::min)(rows,cols); |
| |
| m_qr = matrix; |
| m_hCoeffs.resize(size); |
| |
| m_temp.resize(cols); |
| |
| internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data()); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| /** \return the Householder QR decomposition of \c *this. |
| * |
| * \sa class HouseholderQR |
| */ |
| template<typename Derived> |
| const HouseholderQR<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::householderQr() const |
| { |
| return HouseholderQR<PlainObject>(eval()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_QR_H |