| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |
| #define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef typename remove_all<Lhs>::type::Scalar Scalar; |
| typedef typename remove_all<Lhs>::type::Index Index; |
| |
| // make sure to call innerSize/outerSize since we fake the storage order. |
| Index rows = lhs.innerSize(); |
| Index cols = rhs.outerSize(); |
| eigen_assert(lhs.outerSize() == rhs.innerSize()); |
| |
| std::vector<bool> mask(rows,false); |
| Matrix<Scalar,Dynamic,1> values(rows); |
| Matrix<Index,Dynamic,1> indices(rows); |
| |
| // estimate the number of non zero entries |
| // given a rhs column containing Y non zeros, we assume that the respective Y columns |
| // of the lhs differs in average of one non zeros, thus the number of non zeros for |
| // the product of a rhs column with the lhs is X+Y where X is the average number of non zero |
| // per column of the lhs. |
| // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) |
| Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros(); |
| |
| res.setZero(); |
| res.reserve(Index(estimated_nnz_prod)); |
| // we compute each column of the result, one after the other |
| for (Index j=0; j<cols; ++j) |
| { |
| |
| res.startVec(j); |
| Index nnz = 0; |
| for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt) |
| { |
| Scalar y = rhsIt.value(); |
| Index k = rhsIt.index(); |
| for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt) |
| { |
| Index i = lhsIt.index(); |
| Scalar x = lhsIt.value(); |
| if(!mask[i]) |
| { |
| mask[i] = true; |
| values[i] = x * y; |
| indices[nnz] = i; |
| ++nnz; |
| } |
| else |
| values[i] += x * y; |
| } |
| } |
| |
| // unordered insertion |
| for(int k=0; k<nnz; ++k) |
| { |
| int i = indices[k]; |
| res.insertBackByOuterInnerUnordered(j,i) = values[i]; |
| mask[i] = false; |
| } |
| |
| #if 0 |
| // alternative ordered insertion code: |
| |
| int t200 = rows/(log2(200)*1.39); |
| int t = (rows*100)/139; |
| |
| // FIXME reserve nnz non zeros |
| // FIXME implement fast sort algorithms for very small nnz |
| // if the result is sparse enough => use a quick sort |
| // otherwise => loop through the entire vector |
| // In order to avoid to perform an expensive log2 when the |
| // result is clearly very sparse we use a linear bound up to 200. |
| //if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t) |
| //res.startVec(j); |
| if(true) |
| { |
| if(nnz>1) std::sort(indices.data(),indices.data()+nnz); |
| for(int k=0; k<nnz; ++k) |
| { |
| int i = indices[k]; |
| res.insertBackByOuterInner(j,i) = values[i]; |
| mask[i] = false; |
| } |
| } |
| else |
| { |
| // dense path |
| for(int i=0; i<rows; ++i) |
| { |
| if(mask[i]) |
| { |
| mask[i] = false; |
| res.insertBackByOuterInner(j,i) = values[i]; |
| } |
| } |
| } |
| #endif |
| |
| } |
| res.finalize(); |
| } |
| |
| |
| } // end namespace internal |
| |
| namespace internal { |
| |
| template<typename Lhs, typename Rhs, typename ResultType, |
| int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit, |
| int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit, |
| int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit> |
| struct conservative_sparse_sparse_product_selector; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor> |
| { |
| typedef typename remove_all<Lhs>::type LhsCleaned; |
| typedef typename LhsCleaned::Scalar Scalar; |
| |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix; |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| ColMajorMatrix resCol(lhs.rows(),rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol); |
| // sort the non zeros: |
| RowMajorMatrix resRow(resCol); |
| res = resRow; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix; |
| RowMajorMatrix rhsRow = rhs; |
| RowMajorMatrix resRow(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow); |
| res = resRow; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix; |
| RowMajorMatrix lhsRow = lhs; |
| RowMajorMatrix resRow(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow); |
| res = resRow; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix; |
| RowMajorMatrix resRow(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow); |
| res = resRow; |
| } |
| }; |
| |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor> |
| { |
| typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar; |
| |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| ColMajorMatrix resCol(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol); |
| res = resCol; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| ColMajorMatrix lhsCol = lhs; |
| ColMajorMatrix resCol(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol); |
| res = resCol; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| ColMajorMatrix rhsCol = rhs; |
| ColMajorMatrix resCol(lhs.rows(), rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol); |
| res = resCol; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix; |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| RowMajorMatrix resRow(lhs.rows(),rhs.cols()); |
| internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow); |
| // sort the non zeros: |
| ColMajorMatrix resCol(resRow); |
| res = resCol; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |