blob: 70857c7b6eab43f27478471b14fb268e34c65aa2 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
namespace Eigen {
namespace internal {
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
template<typename Lhs, typename Rhs, typename ResultType>
static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance)
{
// return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
//int size = lhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
// allocate a temporary buffer
AmbiVector<Scalar,Index> tempVector(rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
// mimics a resizeByInnerOuter:
if(ResultType::IsRowMajor)
res.resize(cols, rows);
else
res.resize(rows, cols);
res.reserve(estimated_nnz_prod);
double ratioColRes = double(estimated_nnz_prod)/double(lhs.rows()*rhs.cols());
for (Index j=0; j<cols; ++j)
{
// FIXME:
//double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows());
// let's do a more accurate determination of the nnz ratio for the current column j of res
tempVector.init(ratioColRes);
tempVector.setZero();
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
tempVector.restart();
Scalar x = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
res.startVec(j);
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector,tolerance); it; ++it)
res.insertBackByOuterInner(j,it.index()) = it.value();
}
res.finalize();
}
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
struct sparse_sparse_product_with_pruning_selector;
template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typename remove_all<ResultType>::type _res(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance);
res.swap(_res);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
// we need a col-major matrix to hold the result
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
SparseTemporaryType _res(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance);
res = _res;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
// let's transpose the product to get a column x column product
typename remove_all<ResultType>::type _res(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance);
res.swap(_res);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix colLhs(lhs);
ColMajorMatrix colRhs(rhs);
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res, tolerance);
// let's transpose the product to get a column x column product
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
// SparseTemporaryType _res(res.cols(), res.rows());
// sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
// res = _res.transpose();
}
};
// NOTE the 2 others cases (col row *) must never occur since they are caught
// by ProductReturnType which transforms it to (col col *) by evaluating rhs.
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H