| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #include <iostream> |
| #include <fstream> |
| #include "Eigen/SparseCore" |
| #include <bench/BenchTimer.h> |
| #include <cstdlib> |
| #include <string> |
| #include <Eigen/Cholesky> |
| #include <Eigen/Jacobi> |
| #include <Eigen/Householder> |
| #include <Eigen/IterativeLinearSolvers> |
| #include <unsupported/Eigen/IterativeSolvers> |
| #include <Eigen/LU> |
| #include <unsupported/Eigen/SparseExtra> |
| |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| #include <Eigen/CholmodSupport> |
| #endif |
| |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| #include <Eigen/UmfPackSupport> |
| #endif |
| |
| #ifdef EIGEN_PARDISO_SUPPORT |
| #include <Eigen/PardisoSupport> |
| #endif |
| |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| #include <Eigen/SuperLUSupport> |
| #endif |
| |
| #ifdef EIGEN_PASTIX_SUPPORT |
| #include <Eigen/PaStiXSupport> |
| #endif |
| |
| // CONSTANTS |
| #define EIGEN_UMFPACK 0 |
| #define EIGEN_SUPERLU 1 |
| #define EIGEN_PASTIX 2 |
| #define EIGEN_PARDISO 3 |
| #define EIGEN_BICGSTAB 4 |
| #define EIGEN_BICGSTAB_ILUT 5 |
| #define EIGEN_GMRES 6 |
| #define EIGEN_GMRES_ILUT 7 |
| #define EIGEN_SIMPLICIAL_LDLT 8 |
| #define EIGEN_CHOLMOD_LDLT 9 |
| #define EIGEN_PASTIX_LDLT 10 |
| #define EIGEN_PARDISO_LDLT 11 |
| #define EIGEN_SIMPLICIAL_LLT 12 |
| #define EIGEN_CHOLMOD_SUPERNODAL_LLT 13 |
| #define EIGEN_CHOLMOD_SIMPLICIAL_LLT 14 |
| #define EIGEN_PASTIX_LLT 15 |
| #define EIGEN_PARDISO_LLT 16 |
| #define EIGEN_CG 17 |
| #define EIGEN_CG_PRECOND 18 |
| #define EIGEN_ALL_SOLVERS 19 |
| |
| using namespace Eigen; |
| using namespace std; |
| |
| struct Stats{ |
| ComputationInfo info; |
| double total_time; |
| double compute_time; |
| double solve_time; |
| double rel_error; |
| int memory_used; |
| int iterations; |
| int isavail; |
| int isIterative; |
| }; |
| |
| // Global variables for input parameters |
| int MaximumIters; // Maximum number of iterations |
| double RelErr; // Relative error of the computed solution |
| |
| template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } |
| template<> inline float test_precision<float>() { return 1e-3f; } |
| template<> inline double test_precision<double>() { return 1e-6; } |
| template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } |
| template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } |
| |
| void printStatheader(std::ofstream& out) |
| { |
| int LUcnt = 0; |
| string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT "; |
| |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| LUlist += "<TH > UMFPACK "; LUcnt++; |
| #endif |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| LUlist += "<TH > SUPERLU "; LUcnt++; |
| #endif |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| LLTlist += "<TH > CHOLMOD SP LLT<TH > CHOLMOD LLT"; |
| LDLTlist += "<TH>CHOLMOD LDLT"; |
| #endif |
| #ifdef EIGEN_PARDISO_SUPPORT |
| LUlist += "<TH > PARDISO LU"; LUcnt++; |
| LLTlist += "<TH > PARDISO LLT"; |
| LDLTlist += "<TH > PARDISO LDLT"; |
| #endif |
| #ifdef EIGEN_PASTIX_SUPPORT |
| LUlist += "<TH > PASTIX LU"; LUcnt++; |
| LLTlist += "<TH > PASTIX LLT"; |
| LDLTlist += "<TH > PASTIX LDLT"; |
| #endif |
| |
| out << "<TABLE border=\"1\" >\n "; |
| out << "<TR><TH>Matrix <TH> N <TH> NNZ <TH> "; |
| if (LUcnt) out << LUlist; |
| out << " <TH >BiCGSTAB <TH >BiCGSTAB+ILUT"<< "<TH >GMRES+ILUT" <<LDLTlist << LLTlist << "<TH> CG "<< std::endl; |
| } |
| |
| |
| template<typename Solver, typename Scalar> |
| Stats call_solver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) |
| { |
| Stats stat; |
| Matrix<Scalar, Dynamic, 1> x; |
| BenchTimer timer; |
| timer.reset(); |
| timer.start(); |
| solver.compute(A); |
| if (solver.info() != Success) |
| { |
| stat.info = NumericalIssue; |
| std::cerr << "Solver failed ... \n"; |
| return stat; |
| } |
| timer.stop(); |
| stat.compute_time = timer.value(); |
| |
| timer.reset(); |
| timer.start(); |
| x = solver.solve(b); |
| if (solver.info() == NumericalIssue) |
| { |
| stat.info = NumericalIssue; |
| std::cerr << "Solver failed ... \n"; |
| return stat; |
| } |
| |
| timer.stop(); |
| stat.solve_time = timer.value(); |
| stat.total_time = stat.solve_time + stat.compute_time; |
| stat.memory_used = 0; |
| // Verify the relative error |
| if(refX.size() != 0) |
| stat.rel_error = (refX - x).norm()/refX.norm(); |
| else |
| { |
| // Compute the relative residual norm |
| Matrix<Scalar, Dynamic, 1> temp; |
| temp = A * x; |
| stat.rel_error = (b-temp).norm()/b.norm(); |
| } |
| if ( stat.rel_error > RelErr ) |
| { |
| stat.info = NoConvergence; |
| return stat; |
| } |
| else |
| { |
| stat.info = Success; |
| return stat; |
| } |
| } |
| |
| template<typename Solver, typename Scalar> |
| Stats call_directsolver(Solver& solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) |
| { |
| Stats stat; |
| stat = call_solver(solver, A, b, refX); |
| return stat; |
| } |
| |
| template<typename Solver, typename Scalar> |
| Stats call_itersolver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) |
| { |
| Stats stat; |
| solver.setTolerance(RelErr); |
| solver.setMaxIterations(MaximumIters); |
| |
| stat = call_solver(solver, A, b, refX); |
| stat.iterations = solver.iterations(); |
| return stat; |
| } |
| |
| inline void printStatItem(Stats *stat, int solver_id, int& best_time_id, double& best_time_val) |
| { |
| stat[solver_id].isavail = 1; |
| |
| if (stat[solver_id].info == NumericalIssue) |
| { |
| cout << " SOLVER FAILED ... Probably a numerical issue \n"; |
| return; |
| } |
| if (stat[solver_id].info == NoConvergence){ |
| cout << "REL. ERROR " << stat[solver_id].rel_error; |
| if(stat[solver_id].isIterative == 1) |
| cout << " (" << stat[solver_id].iterations << ") \n"; |
| return; |
| } |
| |
| // Record the best CPU time |
| if (!best_time_val) |
| { |
| best_time_val = stat[solver_id].total_time; |
| best_time_id = solver_id; |
| } |
| else if (stat[solver_id].total_time < best_time_val) |
| { |
| best_time_val = stat[solver_id].total_time; |
| best_time_id = solver_id; |
| } |
| // Print statistics to standard output |
| if (stat[solver_id].info == Success){ |
| cout<< "COMPUTE TIME : " << stat[solver_id].compute_time<< " \n"; |
| cout<< "SOLVE TIME : " << stat[solver_id].solve_time<< " \n"; |
| cout<< "TOTAL TIME : " << stat[solver_id].total_time<< " \n"; |
| cout << "REL. ERROR : " << stat[solver_id].rel_error ; |
| if(stat[solver_id].isIterative == 1) { |
| cout << " (" << stat[solver_id].iterations << ") "; |
| } |
| cout << std::endl; |
| } |
| |
| } |
| |
| |
| /* Print the results from all solvers corresponding to a particular matrix |
| * The best CPU time is printed in bold |
| */ |
| inline void printHtmlStatLine(Stats *stat, int best_time_id, string& statline) |
| { |
| |
| string markup; |
| ostringstream compute,solve,total,error; |
| for (int i = 0; i < EIGEN_ALL_SOLVERS; i++) |
| { |
| if (stat[i].isavail == 0) continue; |
| if(i == best_time_id) |
| markup = "<TD style=\"background-color:red\">"; |
| else |
| markup = "<TD>"; |
| |
| if (stat[i].info == Success){ |
| compute << markup << stat[i].compute_time; |
| solve << markup << stat[i].solve_time; |
| total << markup << stat[i].total_time; |
| error << " <TD> " << stat[i].rel_error; |
| if(stat[i].isIterative == 1) { |
| error << " (" << stat[i].iterations << ") "; |
| } |
| } |
| else { |
| compute << " <TD> -" ; |
| solve << " <TD> -" ; |
| total << " <TD> -" ; |
| if(stat[i].info == NoConvergence){ |
| error << " <TD> "<< stat[i].rel_error ; |
| if(stat[i].isIterative == 1) |
| error << " (" << stat[i].iterations << ") "; |
| } |
| else error << " <TD> - "; |
| } |
| } |
| |
| statline = "<TH>Compute Time " + compute.str() + "\n" |
| + "<TR><TH>Solve Time " + solve.str() + "\n" |
| + "<TR><TH>Total Time " + total.str() + "\n" |
| +"<TR><TH>Error(Iter)" + error.str() + "\n"; |
| |
| } |
| |
| template <typename Scalar> |
| int SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, Stats *stat) |
| { |
| typedef SparseMatrix<Scalar, ColMajor> SpMat; |
| // First, deal with Nonsymmetric and symmetric matrices |
| int best_time_id = 0; |
| double best_time_val = 0.0; |
| //UMFPACK |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| { |
| cout << "Solving with UMFPACK LU ... \n"; |
| UmfPackLU<SpMat> solver; |
| stat[EIGEN_UMFPACK] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat, EIGEN_UMFPACK, best_time_id, best_time_val); |
| } |
| #endif |
| //SuperLU |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| { |
| cout << "\nSolving with SUPERLU ... \n"; |
| SuperLU<SpMat> solver; |
| stat[EIGEN_SUPERLU] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat, EIGEN_SUPERLU, best_time_id, best_time_val); |
| } |
| #endif |
| |
| // PaStix LU |
| #ifdef EIGEN_PASTIX_SUPPORT |
| { |
| cout << "\nSolving with PASTIX LU ... \n"; |
| PastixLU<SpMat> solver; |
| stat[EIGEN_PASTIX] = call_directsolver(solver, A, b, refX) ; |
| printStatItem(stat, EIGEN_PASTIX, best_time_id, best_time_val); |
| } |
| #endif |
| |
| //PARDISO LU |
| #ifdef EIGEN_PARDISO_SUPPORT |
| { |
| cout << "\nSolving with PARDISO LU ... \n"; |
| PardisoLU<SpMat> solver; |
| stat[EIGEN_PARDISO] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat, EIGEN_PARDISO, best_time_id, best_time_val); |
| } |
| #endif |
| |
| |
| |
| //BiCGSTAB |
| { |
| cout << "\nSolving with BiCGSTAB ... \n"; |
| BiCGSTAB<SpMat> solver; |
| stat[EIGEN_BICGSTAB] = call_itersolver(solver, A, b, refX); |
| stat[EIGEN_BICGSTAB].isIterative = 1; |
| printStatItem(stat, EIGEN_BICGSTAB, best_time_id, best_time_val); |
| } |
| //BiCGSTAB+ILUT |
| { |
| cout << "\nSolving with BiCGSTAB and ILUT ... \n"; |
| BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver; |
| stat[EIGEN_BICGSTAB_ILUT] = call_itersolver(solver, A, b, refX); |
| stat[EIGEN_BICGSTAB_ILUT].isIterative = 1; |
| printStatItem(stat, EIGEN_BICGSTAB_ILUT, best_time_id, best_time_val); |
| } |
| |
| |
| //GMRES |
| // { |
| // cout << "\nSolving with GMRES ... \n"; |
| // GMRES<SpMat> solver; |
| // stat[EIGEN_GMRES] = call_itersolver(solver, A, b, refX); |
| // stat[EIGEN_GMRES].isIterative = 1; |
| // printStatItem(stat, EIGEN_GMRES, best_time_id, best_time_val); |
| // } |
| //GMRES+ILUT |
| { |
| cout << "\nSolving with GMRES and ILUT ... \n"; |
| GMRES<SpMat, IncompleteLUT<Scalar> > solver; |
| stat[EIGEN_GMRES_ILUT] = call_itersolver(solver, A, b, refX); |
| stat[EIGEN_GMRES_ILUT].isIterative = 1; |
| printStatItem(stat, EIGEN_GMRES_ILUT, best_time_id, best_time_val); |
| } |
| |
| // Hermitian and not necessarily positive-definites |
| if (sym != NonSymmetric) |
| { |
| // Internal Cholesky |
| { |
| cout << "\nSolving with Simplicial LDLT ... \n"; |
| SimplicialLDLT<SpMat, Lower> solver; |
| stat[EIGEN_SIMPLICIAL_LDLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat, EIGEN_SIMPLICIAL_LDLT, best_time_id, best_time_val); |
| } |
| |
| // CHOLMOD |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| { |
| cout << "\nSolving with CHOLMOD LDLT ... \n"; |
| CholmodDecomposition<SpMat, Lower> solver; |
| solver.setMode(CholmodLDLt); |
| stat[EIGEN_CHOLMOD_LDLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_CHOLMOD_LDLT, best_time_id, best_time_val); |
| } |
| #endif |
| |
| //PASTIX LLT |
| #ifdef EIGEN_PASTIX_SUPPORT |
| { |
| cout << "\nSolving with PASTIX LDLT ... \n"; |
| PastixLDLT<SpMat, Lower> solver; |
| stat[EIGEN_PASTIX_LDLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_PASTIX_LDLT, best_time_id, best_time_val); |
| } |
| #endif |
| |
| //PARDISO LLT |
| #ifdef EIGEN_PARDISO_SUPPORT |
| { |
| cout << "\nSolving with PARDISO LDLT ... \n"; |
| PardisoLDLT<SpMat, Lower> solver; |
| stat[EIGEN_PARDISO_LDLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_PARDISO_LDLT, best_time_id, best_time_val); |
| } |
| #endif |
| } |
| |
| // Now, symmetric POSITIVE DEFINITE matrices |
| if (sym == SPD) |
| { |
| |
| //Internal Sparse Cholesky |
| { |
| cout << "\nSolving with SIMPLICIAL LLT ... \n"; |
| SimplicialLLT<SpMat, Lower> solver; |
| stat[EIGEN_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_SIMPLICIAL_LLT, best_time_id, best_time_val); |
| } |
| |
| // CHOLMOD |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| { |
| // CholMOD SuperNodal LLT |
| cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n"; |
| CholmodDecomposition<SpMat, Lower> solver; |
| solver.setMode(CholmodSupernodalLLt); |
| stat[EIGEN_CHOLMOD_SUPERNODAL_LLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_CHOLMOD_SUPERNODAL_LLT, best_time_id, best_time_val); |
| // CholMod Simplicial LLT |
| cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n"; |
| solver.setMode(CholmodSimplicialLLt); |
| stat[EIGEN_CHOLMOD_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_CHOLMOD_SIMPLICIAL_LLT, best_time_id, best_time_val); |
| } |
| #endif |
| |
| //PASTIX LLT |
| #ifdef EIGEN_PASTIX_SUPPORT |
| { |
| cout << "\nSolving with PASTIX LLT ... \n"; |
| PastixLLT<SpMat, Lower> solver; |
| stat[EIGEN_PASTIX_LLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_PASTIX_LLT, best_time_id, best_time_val); |
| } |
| #endif |
| |
| //PARDISO LLT |
| #ifdef EIGEN_PARDISO_SUPPORT |
| { |
| cout << "\nSolving with PARDISO LLT ... \n"; |
| PardisoLLT<SpMat, Lower> solver; |
| stat[EIGEN_PARDISO_LLT] = call_directsolver(solver, A, b, refX); |
| printStatItem(stat,EIGEN_PARDISO_LLT, best_time_id, best_time_val); |
| } |
| #endif |
| |
| // Internal CG |
| { |
| cout << "\nSolving with CG ... \n"; |
| ConjugateGradient<SpMat, Lower> solver; |
| stat[EIGEN_CG] = call_itersolver(solver, A, b, refX); |
| stat[EIGEN_CG].isIterative = 1; |
| printStatItem(stat,EIGEN_CG, best_time_id, best_time_val); |
| } |
| //CG+IdentityPreconditioner |
| // { |
| // cout << "\nSolving with CG and IdentityPreconditioner ... \n"; |
| // ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver; |
| // stat[EIGEN_CG_PRECOND] = call_itersolver(solver, A, b, refX); |
| // stat[EIGEN_CG_PRECOND].isIterative = 1; |
| // printStatItem(stat,EIGEN_CG_PRECOND, best_time_id, best_time_val); |
| // } |
| } // End SPD matrices |
| |
| return best_time_id; |
| } |
| |
| /* Browse all the matrices available in the specified folder |
| * and solve the associated linear system. |
| * The results of each solve are printed in the standard output |
| * and optionally in the provided html file |
| */ |
| template <typename Scalar> |
| void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol) |
| { |
| MaximumIters = maxiters; // Maximum number of iterations, global variable |
| RelErr = tol; //Relative residual error as stopping criterion for iterative solvers |
| MatrixMarketIterator<Scalar> it(folder); |
| Stats stat[EIGEN_ALL_SOLVERS]; |
| for ( ; it; ++it) |
| { |
| for (int i = 0; i < EIGEN_ALL_SOLVERS; i++) |
| { |
| stat[i].isavail = 0; |
| stat[i].isIterative = 0; |
| } |
| |
| int best_time_id; |
| cout<< "\n\n===================================================== \n"; |
| cout<< " ====== SOLVING WITH MATRIX " << it.matname() << " ====\n"; |
| cout<< " =================================================== \n\n"; |
| Matrix<Scalar, Dynamic, 1> refX; |
| if(it.hasrefX()) refX = it.refX(); |
| best_time_id = SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, &stat[0]); |
| |
| if(statFileExists) |
| { |
| string statline; |
| printHtmlStatLine(&stat[0], best_time_id, statline); |
| std::ofstream statbuf(statFile.c_str(), std::ios::app); |
| statbuf << "<TR><TH rowspan=\"4\">" << it.matname() << " <TD rowspan=\"4\"> " |
| << it.matrix().rows() << " <TD rowspan=\"4\"> " << it.matrix().nonZeros()<< " "<< statline ; |
| statbuf.close(); |
| } |
| } |
| } |
| |
| bool get_options(int argc, char **args, string option, string* value=0) |
| { |
| int idx = 1, found=false; |
| while (idx<argc && !found){ |
| if (option.compare(args[idx]) == 0){ |
| found = true; |
| if(value) *value = args[idx+1]; |
| } |
| idx+=2; |
| } |
| return found; |
| } |