| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void adjoint(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Transpose.h Conjugate.h Dot.h |
| */ |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| RealScalar largerEps = test_precision<RealScalar>(); |
| if (ei_is_same_type<RealScalar,float>::ret) |
| largerEps = RealScalar(1e-3f); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| identity = SquareMatrixType::Identity(rows, rows), |
| square = SquareMatrixType::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| v3 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = ei_random<Scalar>(), |
| s2 = ei_random<Scalar>(); |
| |
| // check basic compatibility of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| |
| // check multiplicative behavior |
| VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); |
| |
| // check basic properties of dot, norm, norm2 |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps)); |
| VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps)); |
| VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1)); |
| VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm()); |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast<RealScalar>(1)); |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| |
| // check compatibility of dot and adjoint |
| VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps)); |
| |
| // like in testBasicStuff, test operator() to check const-qualification |
| int r = ei_random<int>(0, rows-1), |
| c = ei_random<int>(0, cols-1); |
| VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); |
| VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); |
| |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| { |
| // check that Random().normalized() works: tricky as the random xpr must be evaluated by |
| // normalized() in order to produce a consistent result. |
| VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); |
| } |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1); |
| |
| } |
| |
| void test_eigen2_adjoint() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( adjoint(Matrix3d()) ); |
| CALL_SUBTEST_3( adjoint(Matrix4f()) ); |
| CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); |
| CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); |
| CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); |
| } |
| // test a large matrix only once |
| CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); |
| } |
| |