| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void triangular(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| RealScalar largerEps = 10*test_precision<RealScalar>(); |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| m4(rows, cols), |
| r1(rows, cols), |
| r2(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| mones = MatrixType::Ones(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| MatrixType m1up = m1.template part<Eigen::UpperTriangular>(); |
| MatrixType m2up = m2.template part<Eigen::UpperTriangular>(); |
| |
| if (rows*cols>1) |
| { |
| VERIFY(m1up.isUpperTriangular()); |
| VERIFY(m2up.transpose().isLowerTriangular()); |
| VERIFY(!m2.isLowerTriangular()); |
| } |
| |
| // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); |
| |
| // test overloaded operator+= |
| r1.setZero(); |
| r2.setZero(); |
| r1.template part<Eigen::UpperTriangular>() += m1; |
| r2 += m1up; |
| VERIFY_IS_APPROX(r1,r2); |
| |
| // test overloaded operator= |
| m1.setZero(); |
| m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy(); |
| m3 = m2.transpose() * m2; |
| VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1); |
| |
| // test overloaded operator= |
| m1.setZero(); |
| m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy(); |
| VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1); |
| |
| VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal()); |
| |
| m1 = MatrixType::Random(rows, cols); |
| for (int i=0; i<rows; ++i) |
| while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>(); |
| |
| Transpose<MatrixType> trm4(m4); |
| // test back and forward subsitution |
| m3 = m1.template part<Eigen::LowerTriangular>(); |
| VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>() |
| .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| // check M * inv(L) using in place API |
| m4 = m3; |
| m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4); |
| VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); |
| |
| m3 = m1.template part<Eigen::UpperTriangular>(); |
| VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>() |
| .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| // check M * inv(U) using in place API |
| m4 = m3; |
| m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4); |
| VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); |
| |
| m3 = m1.template part<Eigen::UpperTriangular>(); |
| VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps)); |
| m3 = m1.template part<Eigen::LowerTriangular>(); |
| VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps)); |
| |
| VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular()); |
| |
| // test swap |
| m1.setOnes(); |
| m2.setZero(); |
| m2.template part<Eigen::UpperTriangular>().swap(m1); |
| m3.setZero(); |
| m3.template part<Eigen::UpperTriangular>().setOnes(); |
| VERIFY_IS_APPROX(m2,m3); |
| |
| } |
| |
| void selfadjoint() |
| { |
| Matrix2i m; |
| m << 1, 2, |
| 3, 4; |
| |
| Matrix2i m1 = Matrix2i::Zero(); |
| m1.part<SelfAdjoint>() = m; |
| Matrix2i ref1; |
| ref1 << 1, 2, |
| 2, 4; |
| VERIFY(m1 == ref1); |
| |
| Matrix2i m2 = Matrix2i::Zero(); |
| m2.part<SelfAdjoint>() = m.part<UpperTriangular>(); |
| Matrix2i ref2; |
| ref2 << 1, 2, |
| 2, 4; |
| VERIFY(m2 == ref2); |
| |
| Matrix2i m3 = Matrix2i::Zero(); |
| m3.part<SelfAdjoint>() = m.part<LowerTriangular>(); |
| Matrix2i ref3; |
| ref3 << 1, 0, |
| 0, 4; |
| VERIFY(m3 == ref3); |
| |
| // example inspired from bug 159 |
| int array[] = {1, 2, 3, 4}; |
| Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>(); |
| |
| std::cout << "hello\n" << array << std::endl; |
| } |
| |
| void test_eigen2_triangular() |
| { |
| CALL_SUBTEST_8( selfadjoint() ); |
| for(int i = 0; i < g_repeat ; i++) { |
| CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) ); |
| CALL_SUBTEST_3( triangular(Matrix3d()) ); |
| CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) ); |
| CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) ); |
| CALL_SUBTEST_6( triangular(MatrixXd(17,17)) ); |
| CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) ); |
| } |
| } |