| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template<typename MatrixType> void qr() |
| { |
| typedef typename MatrixType::Index Index; |
| |
| Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); |
| Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| MatrixType m1; |
| createRandomPIMatrixOfRank(rank,rows,cols,m1); |
| ColPivHouseholderQR<MatrixType> qr(m1); |
| VERIFY(rank == qr.rank()); |
| VERIFY(cols - qr.rank() == qr.dimensionOfKernel()); |
| VERIFY(!qr.isInjective()); |
| VERIFY(!qr.isInvertible()); |
| VERIFY(!qr.isSurjective()); |
| |
| MatrixQType q = qr.householderQ(); |
| VERIFY_IS_UNITARY(q); |
| |
| MatrixType r = qr.matrixQR().template triangularView<Upper>(); |
| MatrixType c = q * r * qr.colsPermutation().inverse(); |
| VERIFY_IS_APPROX(m1, c); |
| |
| MatrixType m2 = MatrixType::Random(cols,cols2); |
| MatrixType m3 = m1*m2; |
| m2 = MatrixType::Random(cols,cols2); |
| m2 = qr.solve(m3); |
| VERIFY_IS_APPROX(m3, m1*m2); |
| } |
| |
| template<typename MatrixType, int Cols2> void qr_fixedsize() |
| { |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| typedef typename MatrixType::Scalar Scalar; |
| int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1); |
| Matrix<Scalar,Rows,Cols> m1; |
| createRandomPIMatrixOfRank(rank,Rows,Cols,m1); |
| ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1); |
| VERIFY(rank == qr.rank()); |
| VERIFY(Cols - qr.rank() == qr.dimensionOfKernel()); |
| VERIFY(qr.isInjective() == (rank == Rows)); |
| VERIFY(qr.isSurjective() == (rank == Cols)); |
| VERIFY(qr.isInvertible() == (qr.isInjective() && qr.isSurjective())); |
| |
| Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>(); |
| Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse(); |
| VERIFY_IS_APPROX(m1, c); |
| |
| Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); |
| Matrix<Scalar,Rows,Cols2> m3 = m1*m2; |
| m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); |
| m2 = qr.solve(m3); |
| VERIFY_IS_APPROX(m3, m1*m2); |
| } |
| |
| template<typename MatrixType> void qr_invertible() |
| { |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| int size = internal::random<int>(10,50); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1 = MatrixType::Random(size,size); |
| |
| if (internal::is_same<RealScalar,float>::value) |
| { |
| // let's build a matrix more stable to inverse |
| MatrixType a = MatrixType::Random(size,size*2); |
| m1 += a * a.adjoint(); |
| } |
| |
| ColPivHouseholderQR<MatrixType> qr(m1); |
| m3 = MatrixType::Random(size,size); |
| m2 = qr.solve(m3); |
| //VERIFY_IS_APPROX(m3, m1*m2); |
| |
| // now construct a matrix with prescribed determinant |
| m1.setZero(); |
| for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>(); |
| RealScalar absdet = internal::abs(m1.diagonal().prod()); |
| m3 = qr.householderQ(); // get a unitary |
| m1 = m3 * m1 * m3; |
| qr.compute(m1); |
| VERIFY_IS_APPROX(absdet, qr.absDeterminant()); |
| VERIFY_IS_APPROX(internal::log(absdet), qr.logAbsDeterminant()); |
| } |
| |
| template<typename MatrixType> void qr_verify_assert() |
| { |
| MatrixType tmp; |
| |
| ColPivHouseholderQR<MatrixType> qr; |
| VERIFY_RAISES_ASSERT(qr.matrixQR()) |
| VERIFY_RAISES_ASSERT(qr.solve(tmp)) |
| VERIFY_RAISES_ASSERT(qr.householderQ()) |
| VERIFY_RAISES_ASSERT(qr.dimensionOfKernel()) |
| VERIFY_RAISES_ASSERT(qr.isInjective()) |
| VERIFY_RAISES_ASSERT(qr.isSurjective()) |
| VERIFY_RAISES_ASSERT(qr.isInvertible()) |
| VERIFY_RAISES_ASSERT(qr.inverse()) |
| VERIFY_RAISES_ASSERT(qr.absDeterminant()) |
| VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) |
| } |
| |
| void test_qr_colpivoting() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( qr<MatrixXf>() ); |
| CALL_SUBTEST_2( qr<MatrixXd>() ); |
| CALL_SUBTEST_3( qr<MatrixXcd>() ); |
| CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() )); |
| CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() )); |
| CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() )); |
| } |
| |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( qr_invertible<MatrixXf>() ); |
| CALL_SUBTEST_2( qr_invertible<MatrixXd>() ); |
| CALL_SUBTEST_6( qr_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_3( qr_invertible<MatrixXcd>() ); |
| } |
| |
| CALL_SUBTEST_7(qr_verify_assert<Matrix3f>()); |
| CALL_SUBTEST_8(qr_verify_assert<Matrix3d>()); |
| CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); |
| CALL_SUBTEST_2(qr_verify_assert<MatrixXd>()); |
| CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>()); |
| CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>()); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20)); |
| } |