| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ALIGNED_VECTOR3 |
| #define EIGEN_ALIGNED_VECTOR3 |
| |
| #include <Eigen/Geometry> |
| |
| namespace Eigen { |
| |
| /** \ingroup Unsupported_modules |
| * \defgroup AlignedVector3_Module Aligned vector3 module |
| * |
| * \code |
| * #include <unsupported/Eigen/AlignedVector3> |
| * \endcode |
| */ |
| //@{ |
| |
| |
| /** \class AlignedVector3 |
| * |
| * \brief A vectorization friendly 3D vector |
| * |
| * This class represents a 3D vector internally using a 4D vector |
| * such that vectorization can be seamlessly enabled. Of course, |
| * the same result can be achieved by directly using a 4D vector. |
| * This class makes this process simpler. |
| * |
| */ |
| // TODO specialize Cwise |
| template<typename _Scalar> class AlignedVector3; |
| |
| namespace internal { |
| template<typename _Scalar> struct traits<AlignedVector3<_Scalar> > |
| : traits<Matrix<_Scalar,3,1,0,4,1> > |
| { |
| }; |
| } |
| |
| template<typename _Scalar> class AlignedVector3 |
| : public MatrixBase<AlignedVector3<_Scalar> > |
| { |
| typedef Matrix<_Scalar,4,1> CoeffType; |
| CoeffType m_coeffs; |
| public: |
| |
| typedef MatrixBase<AlignedVector3<_Scalar> > Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3) |
| using Base::operator*; |
| |
| inline Index rows() const { return 3; } |
| inline Index cols() const { return 1; } |
| |
| inline const Scalar& coeff(Index row, Index col) const |
| { return m_coeffs.coeff(row, col); } |
| |
| inline Scalar& coeffRef(Index row, Index col) |
| { return m_coeffs.coeffRef(row, col); } |
| |
| inline const Scalar& coeff(Index index) const |
| { return m_coeffs.coeff(index); } |
| |
| inline Scalar& coeffRef(Index index) |
| { return m_coeffs.coeffRef(index);} |
| |
| |
| inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) |
| : m_coeffs(x, y, z, Scalar(0)) |
| {} |
| |
| inline AlignedVector3(const AlignedVector3& other) |
| : Base(), m_coeffs(other.m_coeffs) |
| {} |
| |
| template<typename XprType, int Size=XprType::SizeAtCompileTime> |
| struct generic_assign_selector {}; |
| |
| template<typename XprType> struct generic_assign_selector<XprType,4> |
| { |
| inline static void run(AlignedVector3& dest, const XprType& src) |
| { |
| dest.m_coeffs = src; |
| } |
| }; |
| |
| template<typename XprType> struct generic_assign_selector<XprType,3> |
| { |
| inline static void run(AlignedVector3& dest, const XprType& src) |
| { |
| dest.m_coeffs.template head<3>() = src; |
| dest.m_coeffs.w() = Scalar(0); |
| } |
| }; |
| |
| template<typename Derived> |
| inline explicit AlignedVector3(const MatrixBase<Derived>& other) |
| { |
| generic_assign_selector<Derived>::run(*this,other.derived()); |
| } |
| |
| inline AlignedVector3& operator=(const AlignedVector3& other) |
| { m_coeffs = other.m_coeffs; return *this; } |
| |
| |
| inline AlignedVector3 operator+(const AlignedVector3& other) const |
| { return AlignedVector3(m_coeffs + other.m_coeffs); } |
| |
| inline AlignedVector3& operator+=(const AlignedVector3& other) |
| { m_coeffs += other.m_coeffs; return *this; } |
| |
| inline AlignedVector3 operator-(const AlignedVector3& other) const |
| { return AlignedVector3(m_coeffs - other.m_coeffs); } |
| |
| inline AlignedVector3 operator-=(const AlignedVector3& other) |
| { m_coeffs -= other.m_coeffs; return *this; } |
| |
| inline AlignedVector3 operator*(const Scalar& s) const |
| { return AlignedVector3(m_coeffs * s); } |
| |
| inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) |
| { return AlignedVector3(s * vec.m_coeffs); } |
| |
| inline AlignedVector3& operator*=(const Scalar& s) |
| { m_coeffs *= s; return *this; } |
| |
| inline AlignedVector3 operator/(const Scalar& s) const |
| { return AlignedVector3(m_coeffs / s); } |
| |
| inline AlignedVector3& operator/=(const Scalar& s) |
| { m_coeffs /= s; return *this; } |
| |
| inline Scalar dot(const AlignedVector3& other) const |
| { |
| eigen_assert(m_coeffs.w()==Scalar(0)); |
| eigen_assert(other.m_coeffs.w()==Scalar(0)); |
| return m_coeffs.dot(other.m_coeffs); |
| } |
| |
| inline void normalize() |
| { |
| m_coeffs /= norm(); |
| } |
| |
| inline AlignedVector3 normalized() |
| { |
| return AlignedVector3(m_coeffs / norm()); |
| } |
| |
| inline Scalar sum() const |
| { |
| eigen_assert(m_coeffs.w()==Scalar(0)); |
| return m_coeffs.sum(); |
| } |
| |
| inline Scalar squaredNorm() const |
| { |
| eigen_assert(m_coeffs.w()==Scalar(0)); |
| return m_coeffs.squaredNorm(); |
| } |
| |
| inline Scalar norm() const |
| { |
| return internal::sqrt(squaredNorm()); |
| } |
| |
| inline AlignedVector3 cross(const AlignedVector3& other) const |
| { |
| return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); |
| } |
| |
| template<typename Derived> |
| inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const |
| { |
| return m_coeffs.template head<3>().isApprox(other,eps); |
| } |
| }; |
| |
| //@} |
| |
| } |
| |
| #endif // EIGEN_ALIGNED_VECTOR3 |