| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef KDBVH_H_INCLUDED |
| #define KDBVH_H_INCLUDED |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| //internal pair class for the BVH--used instead of std::pair because of alignment |
| template<typename Scalar, int Dim> |
| struct vector_int_pair |
| { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim) |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| |
| vector_int_pair(const VectorType &v, int i) : first(v), second(i) {} |
| |
| VectorType first; |
| int second; |
| }; |
| |
| //these templates help the tree initializer get the bounding boxes either from a provided |
| //iterator range or using bounding_box in a unified way |
| template<typename ObjectList, typename VolumeList, typename BoxIter> |
| struct get_boxes_helper { |
| void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes) |
| { |
| outBoxes.insert(outBoxes.end(), boxBegin, boxEnd); |
| eigen_assert(outBoxes.size() == objects.size()); |
| } |
| }; |
| |
| template<typename ObjectList, typename VolumeList> |
| struct get_boxes_helper<ObjectList, VolumeList, int> { |
| void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes) |
| { |
| outBoxes.reserve(objects.size()); |
| for(int i = 0; i < (int)objects.size(); ++i) |
| outBoxes.push_back(bounding_box(objects[i])); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| |
| /** \class KdBVH |
| * \brief A simple bounding volume hierarchy based on AlignedBox |
| * |
| * \param _Scalar The underlying scalar type of the bounding boxes |
| * \param _Dim The dimension of the space in which the hierarchy lives |
| * \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must |
| * be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer. |
| * |
| * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree. |
| * Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers |
| * and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around, |
| * it is useful for _Object to be a pointer. |
| */ |
| template<typename _Scalar, int _Dim, typename _Object> class KdBVH |
| { |
| public: |
| enum { Dim = _Dim }; |
| typedef _Object Object; |
| typedef std::vector<Object, aligned_allocator<Object> > ObjectList; |
| typedef _Scalar Scalar; |
| typedef AlignedBox<Scalar, Dim> Volume; |
| typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList; |
| typedef int Index; |
| typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors |
| typedef const Object *ObjectIterator; |
| |
| KdBVH() {} |
| |
| /** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */ |
| template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type |
| |
| /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */ |
| template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); } |
| |
| /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently. |
| * Requires that bounding_box(Object) return a Volume. */ |
| template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); } |
| |
| /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, |
| * constructs the BVH, overwriting whatever is in there currently. */ |
| template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) |
| { |
| objects.clear(); |
| boxes.clear(); |
| children.clear(); |
| |
| objects.insert(objects.end(), begin, end); |
| int n = static_cast<int>(objects.size()); |
| |
| if(n < 2) |
| return; //if we have at most one object, we don't need any internal nodes |
| |
| VolumeList objBoxes; |
| VIPairList objCenters; |
| |
| //compute the bounding boxes depending on BIter type |
| internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes); |
| |
| objCenters.reserve(n); |
| boxes.reserve(n - 1); |
| children.reserve(2 * n - 2); |
| |
| for(int i = 0; i < n; ++i) |
| objCenters.push_back(VIPair(objBoxes[i].center(), i)); |
| |
| build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm |
| |
| ObjectList tmp(n); |
| tmp.swap(objects); |
| for(int i = 0; i < n; ++i) |
| objects[i] = tmp[objCenters[i].second]; |
| } |
| |
| /** \returns the index of the root of the hierarchy */ |
| inline Index getRootIndex() const { return (int)boxes.size() - 1; } |
| |
| /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node |
| * and \a outOBegin and \a outOEnd range over the object children of the node */ |
| EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd, |
| ObjectIterator &outOBegin, ObjectIterator &outOEnd) const |
| { //inlining this function should open lots of optimization opportunities to the compiler |
| if(index < 0) { |
| outVBegin = outVEnd; |
| if(!objects.empty()) |
| outOBegin = &(objects[0]); |
| outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object |
| return; |
| } |
| |
| int numBoxes = static_cast<int>(boxes.size()); |
| |
| int idx = index * 2; |
| if(children[idx + 1] < numBoxes) { //second index is always bigger |
| outVBegin = &(children[idx]); |
| outVEnd = outVBegin + 2; |
| outOBegin = outOEnd; |
| } |
| else if(children[idx] >= numBoxes) { //if both children are objects |
| outVBegin = outVEnd; |
| outOBegin = &(objects[children[idx] - numBoxes]); |
| outOEnd = outOBegin + 2; |
| } else { //if the first child is a volume and the second is an object |
| outVBegin = &(children[idx]); |
| outVEnd = outVBegin + 1; |
| outOBegin = &(objects[children[idx + 1] - numBoxes]); |
| outOEnd = outOBegin + 1; |
| } |
| } |
| |
| /** \returns the bounding box of the node at \a index */ |
| inline const Volume &getVolume(Index index) const |
| { |
| return boxes[index]; |
| } |
| |
| private: |
| typedef internal::vector_int_pair<Scalar, Dim> VIPair; |
| typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList; |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension |
| { |
| VectorComparator(int inDim) : dim(inDim) {} |
| inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; } |
| int dim; |
| }; |
| |
| //Build the part of the tree between objects[from] and objects[to] (not including objects[to]). |
| //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs |
| //the two halves, and adds their parent node. TODO: a cache-friendlier layout |
| void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim) |
| { |
| eigen_assert(to - from > 1); |
| if(to - from == 2) { |
| boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second])); |
| children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes |
| children.push_back(from + (int)objects.size()); |
| } |
| else if(to - from == 3) { |
| int mid = from + 2; |
| std::nth_element(objCenters.begin() + from, objCenters.begin() + mid, |
| objCenters.begin() + to, VectorComparator(dim)); //partition |
| build(objCenters, from, mid, objBoxes, (dim + 1) % Dim); |
| int idx1 = (int)boxes.size() - 1; |
| boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second])); |
| children.push_back(idx1); |
| children.push_back(mid + (int)objects.size() - 1); |
| } |
| else { |
| int mid = from + (to - from) / 2; |
| nth_element(objCenters.begin() + from, objCenters.begin() + mid, |
| objCenters.begin() + to, VectorComparator(dim)); //partition |
| build(objCenters, from, mid, objBoxes, (dim + 1) % Dim); |
| int idx1 = (int)boxes.size() - 1; |
| build(objCenters, mid, to, objBoxes, (dim + 1) % Dim); |
| int idx2 = (int)boxes.size() - 1; |
| boxes.push_back(boxes[idx1].merged(boxes[idx2])); |
| children.push_back(idx1); |
| children.push_back(idx2); |
| } |
| } |
| |
| std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects. |
| VolumeList boxes; |
| ObjectList objects; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif //KDBVH_H_INCLUDED |