| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_FUNCTION |
| #define EIGEN_MATRIX_FUNCTION |
| |
| #include "StemFunction.h" |
| #include "MatrixFunctionAtomic.h" |
| |
| |
| namespace Eigen { |
| |
| /** \ingroup MatrixFunctions_Module |
| * \brief Class for computing matrix functions. |
| * \tparam MatrixType type of the argument of the matrix function, |
| * expected to be an instantiation of the Matrix class template. |
| * \tparam AtomicType type for computing matrix function of atomic blocks. |
| * \tparam IsComplex used internally to select correct specialization. |
| * |
| * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the |
| * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the |
| * computation of the matrix function on every block corresponding to these clusters to an object of type |
| * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class |
| * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. |
| * |
| * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic |
| */ |
| template <typename MatrixType, |
| typename AtomicType, |
| int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| class MatrixFunction |
| { |
| public: |
| |
| /** \brief Constructor. |
| * |
| * \param[in] A argument of matrix function, should be a square matrix. |
| * \param[in] atomic class for computing matrix function of atomic blocks. |
| * |
| * The class stores references to \p A and \p atomic, so they should not be |
| * changed (or destroyed) before compute() is called. |
| */ |
| MatrixFunction(const MatrixType& A, AtomicType& atomic); |
| |
| /** \brief Compute the matrix function. |
| * |
| * \param[out] result the function \p f applied to \p A, as |
| * specified in the constructor. |
| * |
| * See MatrixBase::matrixFunction() for details on how this computation |
| * is implemented. |
| */ |
| template <typename ResultType> |
| void compute(ResultType &result); |
| }; |
| |
| |
| /** \internal \ingroup MatrixFunctions_Module |
| * \brief Partial specialization of MatrixFunction for real matrices |
| */ |
| template <typename MatrixType, typename AtomicType> |
| class MatrixFunction<MatrixType, AtomicType, 0> |
| { |
| private: |
| |
| typedef internal::traits<MatrixType> Traits; |
| typedef typename Traits::Scalar Scalar; |
| static const int Rows = Traits::RowsAtCompileTime; |
| static const int Cols = Traits::ColsAtCompileTime; |
| static const int Options = MatrixType::Options; |
| static const int MaxRows = Traits::MaxRowsAtCompileTime; |
| static const int MaxCols = Traits::MaxColsAtCompileTime; |
| |
| typedef std::complex<Scalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix; |
| |
| public: |
| |
| /** \brief Constructor. |
| * |
| * \param[in] A argument of matrix function, should be a square matrix. |
| * \param[in] atomic class for computing matrix function of atomic blocks. |
| */ |
| MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { } |
| |
| /** \brief Compute the matrix function. |
| * |
| * \param[out] result the function \p f applied to \p A, as |
| * specified in the constructor. |
| * |
| * This function converts the real matrix \c A to a complex matrix, |
| * uses MatrixFunction<MatrixType,1> and then converts the result back to |
| * a real matrix. |
| */ |
| template <typename ResultType> |
| void compute(ResultType& result) |
| { |
| ComplexMatrix CA = m_A.template cast<ComplexScalar>(); |
| ComplexMatrix Cresult; |
| MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic); |
| mf.compute(Cresult); |
| result = Cresult.real(); |
| } |
| |
| private: |
| typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ |
| AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ |
| |
| MatrixFunction& operator=(const MatrixFunction&); |
| }; |
| |
| |
| /** \internal \ingroup MatrixFunctions_Module |
| * \brief Partial specialization of MatrixFunction for complex matrices |
| */ |
| template <typename MatrixType, typename AtomicType> |
| class MatrixFunction<MatrixType, AtomicType, 1> |
| { |
| private: |
| |
| typedef internal::traits<MatrixType> Traits; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| static const int RowsAtCompileTime = Traits::RowsAtCompileTime; |
| static const int ColsAtCompileTime = Traits::ColsAtCompileTime; |
| static const int Options = MatrixType::Options; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType; |
| typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType; |
| typedef std::list<Scalar> Cluster; |
| typedef std::list<Cluster> ListOfClusters; |
| typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; |
| |
| public: |
| |
| MatrixFunction(const MatrixType& A, AtomicType& atomic); |
| template <typename ResultType> void compute(ResultType& result); |
| |
| private: |
| |
| void computeSchurDecomposition(); |
| void partitionEigenvalues(); |
| typename ListOfClusters::iterator findCluster(Scalar key); |
| void computeClusterSize(); |
| void computeBlockStart(); |
| void constructPermutation(); |
| void permuteSchur(); |
| void swapEntriesInSchur(Index index); |
| void computeBlockAtomic(); |
| Block<MatrixType> block(MatrixType& A, Index i, Index j); |
| void computeOffDiagonal(); |
| DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C); |
| |
| typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ |
| AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ |
| MatrixType m_T; /**< \brief Triangular part of Schur decomposition */ |
| MatrixType m_U; /**< \brief Unitary part of Schur decomposition */ |
| MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */ |
| ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */ |
| DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */ |
| DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */ |
| DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */ |
| IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */ |
| |
| /** \brief Maximum distance allowed between eigenvalues to be considered "close". |
| * |
| * This is morally a \c static \c const \c Scalar, but only |
| * integers can be static constant class members in C++. The |
| * separation constant is set to 0.1, a value taken from the |
| * paper by Davies and Higham. */ |
| static const RealScalar separation() { return static_cast<RealScalar>(0.1); } |
| |
| MatrixFunction& operator=(const MatrixFunction&); |
| }; |
| |
| /** \brief Constructor. |
| * |
| * \param[in] A argument of matrix function, should be a square matrix. |
| * \param[in] atomic class for computing matrix function of atomic blocks. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic) |
| : m_A(A), m_atomic(atomic) |
| { |
| /* empty body */ |
| } |
| |
| /** \brief Compute the matrix function. |
| * |
| * \param[out] result the function \p f applied to \p A, as |
| * specified in the constructor. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| template <typename ResultType> |
| void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result) |
| { |
| computeSchurDecomposition(); |
| partitionEigenvalues(); |
| computeClusterSize(); |
| computeBlockStart(); |
| constructPermutation(); |
| permuteSchur(); |
| computeBlockAtomic(); |
| computeOffDiagonal(); |
| result = m_U * m_fT * m_U.adjoint(); |
| } |
| |
| /** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition() |
| { |
| const ComplexSchur<MatrixType> schurOfA(m_A); |
| m_T = schurOfA.matrixT(); |
| m_U = schurOfA.matrixU(); |
| } |
| |
| /** \brief Partition eigenvalues in clusters of ei'vals close to each other |
| * |
| * This function computes #m_clusters. This is a partition of the |
| * eigenvalues of #m_T in clusters, such that |
| * # Any eigenvalue in a certain cluster is at most separation() away |
| * from another eigenvalue in the same cluster. |
| * # The distance between two eigenvalues in different clusters is |
| * more than separation(). |
| * The implementation follows Algorithm 4.1 in the paper of Davies |
| * and Higham. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues() |
| { |
| const Index rows = m_T.rows(); |
| VectorType diag = m_T.diagonal(); // contains eigenvalues of A |
| |
| for (Index i=0; i<rows; ++i) { |
| // Find set containing diag(i), adding a new set if necessary |
| typename ListOfClusters::iterator qi = findCluster(diag(i)); |
| if (qi == m_clusters.end()) { |
| Cluster l; |
| l.push_back(diag(i)); |
| m_clusters.push_back(l); |
| qi = m_clusters.end(); |
| --qi; |
| } |
| |
| // Look for other element to add to the set |
| for (Index j=i+1; j<rows; ++j) { |
| if (internal::abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) { |
| typename ListOfClusters::iterator qj = findCluster(diag(j)); |
| if (qj == m_clusters.end()) { |
| qi->push_back(diag(j)); |
| } else { |
| qi->insert(qi->end(), qj->begin(), qj->end()); |
| m_clusters.erase(qj); |
| } |
| } |
| } |
| } |
| } |
| |
| /** \brief Find cluster in #m_clusters containing some value |
| * \param[in] key Value to find |
| * \returns Iterator to cluster containing \c key, or |
| * \c m_clusters.end() if no cluster in m_clusters contains \c key. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key) |
| { |
| typename Cluster::iterator j; |
| for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) { |
| j = std::find(i->begin(), i->end(), key); |
| if (j != i->end()) |
| return i; |
| } |
| return m_clusters.end(); |
| } |
| |
| /** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize() |
| { |
| const Index rows = m_T.rows(); |
| VectorType diag = m_T.diagonal(); |
| const Index numClusters = static_cast<Index>(m_clusters.size()); |
| |
| m_clusterSize.setZero(numClusters); |
| m_eivalToCluster.resize(rows); |
| Index clusterIndex = 0; |
| for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) { |
| for (Index i = 0; i < diag.rows(); ++i) { |
| if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) { |
| ++m_clusterSize[clusterIndex]; |
| m_eivalToCluster[i] = clusterIndex; |
| } |
| } |
| ++clusterIndex; |
| } |
| } |
| |
| /** \brief Compute #m_blockStart using #m_clusterSize */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart() |
| { |
| m_blockStart.resize(m_clusterSize.rows()); |
| m_blockStart(0) = 0; |
| for (Index i = 1; i < m_clusterSize.rows(); i++) { |
| m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1); |
| } |
| } |
| |
| /** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation() |
| { |
| DynamicIntVectorType indexNextEntry = m_blockStart; |
| m_permutation.resize(m_T.rows()); |
| for (Index i = 0; i < m_T.rows(); i++) { |
| Index cluster = m_eivalToCluster[i]; |
| m_permutation[i] = indexNextEntry[cluster]; |
| ++indexNextEntry[cluster]; |
| } |
| } |
| |
| /** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur() |
| { |
| IntVectorType p = m_permutation; |
| for (Index i = 0; i < p.rows() - 1; i++) { |
| Index j; |
| for (j = i; j < p.rows(); j++) { |
| if (p(j) == i) break; |
| } |
| eigen_assert(p(j) == i); |
| for (Index k = j-1; k >= i; k--) { |
| swapEntriesInSchur(k); |
| std::swap(p.coeffRef(k), p.coeffRef(k+1)); |
| } |
| } |
| } |
| |
| /** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index) |
| { |
| JacobiRotation<Scalar> rotation; |
| rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index)); |
| m_T.applyOnTheLeft(index, index+1, rotation.adjoint()); |
| m_T.applyOnTheRight(index, index+1, rotation); |
| m_U.applyOnTheRight(index, index+1, rotation); |
| } |
| |
| /** \brief Compute block diagonal part of #m_fT. |
| * |
| * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking |
| * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The |
| * off-diagonal parts of #m_fT are set to zero. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic() |
| { |
| m_fT.resize(m_T.rows(), m_T.cols()); |
| m_fT.setZero(); |
| for (Index i = 0; i < m_clusterSize.rows(); ++i) { |
| block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i)); |
| } |
| } |
| |
| /** \brief Return block of matrix according to blocking given by #m_blockStart */ |
| template <typename MatrixType, typename AtomicType> |
| Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j) |
| { |
| return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j)); |
| } |
| |
| /** \brief Compute part of #m_fT above block diagonal. |
| * |
| * This routine assumes that the block diagonal part of #m_fT (which |
| * equals the matrix function applied to #m_T) has already been computed and computes |
| * the part above the block diagonal. The part below the diagonal is |
| * zero, because #m_T is upper triangular. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal() |
| { |
| for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) { |
| for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) { |
| // compute (blockIndex, blockIndex+diagIndex) block |
| DynMatrixType A = block(m_T, blockIndex, blockIndex); |
| DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex); |
| DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex); |
| C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex); |
| for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) { |
| C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex); |
| C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex); |
| } |
| block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C); |
| } |
| } |
| } |
| |
| /** \brief Solve a triangular Sylvester equation AX + XB = C |
| * |
| * \param[in] A the matrix A; should be square and upper triangular |
| * \param[in] B the matrix B; should be square and upper triangular |
| * \param[in] C the matrix C; should have correct size. |
| * |
| * \returns the solution X. |
| * |
| * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. |
| * The (i,j)-th component of the Sylvester equation is |
| * \f[ |
| * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. |
| * \f] |
| * This can be re-arranged to yield: |
| * \f[ |
| * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} |
| * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). |
| * \f] |
| * It is assumed that A and B are such that the numerator is never |
| * zero (otherwise the Sylvester equation does not have a unique |
| * solution). In that case, these equations can be evaluated in the |
| * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. |
| */ |
| template <typename MatrixType, typename AtomicType> |
| typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester( |
| const DynMatrixType& A, |
| const DynMatrixType& B, |
| const DynMatrixType& C) |
| { |
| eigen_assert(A.rows() == A.cols()); |
| eigen_assert(A.isUpperTriangular()); |
| eigen_assert(B.rows() == B.cols()); |
| eigen_assert(B.isUpperTriangular()); |
| eigen_assert(C.rows() == A.rows()); |
| eigen_assert(C.cols() == B.rows()); |
| |
| Index m = A.rows(); |
| Index n = B.rows(); |
| DynMatrixType X(m, n); |
| |
| for (Index i = m - 1; i >= 0; --i) { |
| for (Index j = 0; j < n; ++j) { |
| |
| // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} |
| Scalar AX; |
| if (i == m - 1) { |
| AX = 0; |
| } else { |
| Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); |
| AX = AXmatrix(0,0); |
| } |
| |
| // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} |
| Scalar XB; |
| if (j == 0) { |
| XB = 0; |
| } else { |
| Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); |
| XB = XBmatrix(0,0); |
| } |
| |
| X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); |
| } |
| } |
| return X; |
| } |
| |
| /** \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix function of some matrix (expression). |
| * |
| * \tparam Derived Type of the argument to the matrix function. |
| * |
| * This class holds the argument to the matrix function until it is |
| * assigned or evaluated for some other reason (so the argument |
| * should not be changed in the meantime). It is the return type of |
| * matrixBase::matrixFunction() and related functions and most of the |
| * time this is the only way it is used. |
| */ |
| template<typename Derived> class MatrixFunctionReturnValue |
| : public ReturnByValue<MatrixFunctionReturnValue<Derived> > |
| { |
| public: |
| |
| typedef typename Derived::Scalar Scalar; |
| typedef typename Derived::Index Index; |
| typedef typename internal::stem_function<Scalar>::type StemFunction; |
| |
| /** \brief Constructor. |
| * |
| * \param[in] A %Matrix (expression) forming the argument of the |
| * matrix function. |
| * \param[in] f Stem function for matrix function under consideration. |
| */ |
| MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } |
| |
| /** \brief Compute the matrix function. |
| * |
| * \param[out] result \p f applied to \p A, where \p f and \p A |
| * are as in the constructor. |
| */ |
| template <typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| typedef typename Derived::PlainObject PlainObject; |
| typedef internal::traits<PlainObject> Traits; |
| static const int RowsAtCompileTime = Traits::RowsAtCompileTime; |
| static const int ColsAtCompileTime = Traits::ColsAtCompileTime; |
| static const int Options = PlainObject::Options; |
| typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
| typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; |
| typedef MatrixFunctionAtomic<DynMatrixType> AtomicType; |
| AtomicType atomic(m_f); |
| |
| const PlainObject Aevaluated = m_A.eval(); |
| MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic); |
| mf.compute(result); |
| } |
| |
| Index rows() const { return m_A.rows(); } |
| Index cols() const { return m_A.cols(); } |
| |
| private: |
| typename internal::nested<Derived>::type m_A; |
| StemFunction *m_f; |
| |
| MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&); |
| }; |
| |
| namespace internal { |
| template<typename Derived> |
| struct traits<MatrixFunctionReturnValue<Derived> > |
| { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| } |
| |
| |
| /********** MatrixBase methods **********/ |
| |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const |
| { |
| eigen_assert(rows() == cols()); |
| return MatrixFunctionReturnValue<Derived>(derived(), f); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_FUNCTION |